Skip to main content

Scale Invariant Feature Transform with Irregular Orientation Histogram Binning

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

Abstract

The SIFT (Scale Invariant Feature Transform) descriptor is a widely used method for matching image features. However, perfect scale invariance can not be achieved in practice because of sampling artefacts, noise in the image data, and the fact that the computational effort limits the number of analyzed scale space images. In this paper we propose a modification of the descriptor’s regular grid of orientation histogram bins to an irregular grid. The irregular grid approach reduces the negative effect of scale error and significantly increases the matching precision for image features. Results with a standard data set are presented that show that the irregular grid approach outperforms the original SIFT descriptor and other state-of-the-art extentions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely invariant regions. In: Proc. British Machine Vision Conference, pp. 412–425 (2000)

    Google Scholar 

  2. Thormählen, T., Hasler, N., Wand, M., Seidel, H.P.: Merging of feature tracks for camera motion estimation from video. In: 5th European Conference on Visual Media Production (CVMP 2008), London, UK (2008)

    Google Scholar 

  3. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74(1), 59–73 (2007)

    Article  Google Scholar 

  4. Sivic, J., Zisserman, A.: Video data mining using configurations of viewpoint invariant regions. In: Computer Vision and Pattern Recognition, vol. 1, pp. 488–495. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  6. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Trans. on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  7. Baumberg, A.: Reliable feature matching across widely separated views. In: Computer Vision and Pattern Recognition, vol. 1, p. 1774. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  8. Freeman, W., Adelson, E.: The design and use of steerable filters. Trans. on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)

    Article  Google Scholar 

  9. Florack, L.M.J., ter Haar Romeny, B., Koenderink, J.J., Viergever, M.A.: General intensity transformations and differential invariants. Journal of Mathematical Imaging and Vision 4, 171–187 (1994)

    Article  MathSciNet  Google Scholar 

  10. Gool, L.J.V., Moons, T., Ungureanu, D.: Affine/ photometric invariants for planar intensity patterns. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 642–651. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Computer Vision and Pattern Recognition, vol. 2, pp. 506–513. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  12. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using affine-invariant regions. In: Computer Vision and Pattern Recognition, vol. 2, p. 319. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, Y., Hasler, N., Thormählen, T., Seidel, HP. (2009). Scale Invariant Feature Transform with Irregular Orientation Histogram Binning. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics