Abstract
The SIFT (Scale Invariant Feature Transform) descriptor is a widely used method for matching image features. However, perfect scale invariance can not be achieved in practice because of sampling artefacts, noise in the image data, and the fact that the computational effort limits the number of analyzed scale space images. In this paper we propose a modification of the descriptor’s regular grid of orientation histogram bins to an irregular grid. The irregular grid approach reduces the negative effect of scale error and significantly increases the matching precision for image features. Results with a standard data set are presented that show that the irregular grid approach outperforms the original SIFT descriptor and other state-of-the-art extentions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely invariant regions. In: Proc. British Machine Vision Conference, pp. 412–425 (2000)
Thormählen, T., Hasler, N., Wand, M., Seidel, H.P.: Merging of feature tracks for camera motion estimation from video. In: 5th European Conference on Visual Media Production (CVMP 2008), London, UK (2008)
Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74(1), 59–73 (2007)
Sivic, J., Zisserman, A.: Video data mining using configurations of viewpoint invariant regions. In: Computer Vision and Pattern Recognition, vol. 1, pp. 488–495. IEEE Computer Society, Los Alamitos (2004)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Trans. on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Baumberg, A.: Reliable feature matching across widely separated views. In: Computer Vision and Pattern Recognition, vol. 1, p. 1774. IEEE Computer Society, Los Alamitos (2000)
Freeman, W., Adelson, E.: The design and use of steerable filters. Trans. on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)
Florack, L.M.J., ter Haar Romeny, B., Koenderink, J.J., Viergever, M.A.: General intensity transformations and differential invariants. Journal of Mathematical Imaging and Vision 4, 171–187 (1994)
Gool, L.J.V., Moons, T., Ungureanu, D.: Affine/ photometric invariants for planar intensity patterns. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 642–651. Springer, Heidelberg (1996)
Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Computer Vision and Pattern Recognition, vol. 2, pp. 506–513. IEEE Computer Society, Los Alamitos (2004)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using affine-invariant regions. In: Computer Vision and Pattern Recognition, vol. 2, p. 319. IEEE Computer Society, Los Alamitos (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cui, Y., Hasler, N., Thormählen, T., Seidel, HP. (2009). Scale Invariant Feature Transform with Irregular Orientation Histogram Binning. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-02611-9_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02610-2
Online ISBN: 978-3-642-02611-9
eBook Packages: Computer ScienceComputer Science (R0)