Skip to main content

Extracting Structured Topological Features from 3D Facial Surface: Approach and Applications

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

  • 2244 Accesses

Abstract

In this paper, we present an approach for extracting structured topological features from a triangular mesh manifold. These features include concentric rings of facets, which can be arranged in spiral-wise fashion. After describing the approach, the paper highlights the utility of such features in some applications related to 3D facial data processing. This include, assessing triangular mesh tessellations, detecting facial landmarks, computing geodesic features, and extracting shape descriptors. Experiments made with 3D facial data confirmed the great potential of this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moreno, A.B., et al.: Robust Representation of 3d Faces for Recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 20(8), 1159–1186 (2006)

    Article  Google Scholar 

  2. Chua, C.S., et al.: 3D human face recognition using point signature. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 233–238 (2000)

    Google Scholar 

  3. Beumier, C., et al.: Face verification from 3D and grey level clues. Pattern Recognition Letters 22, 1321–1329 (2001)

    Article  MATH  Google Scholar 

  4. Wu, Y., et al.: Face Authentication Based on Multiple Profiles Extracted from range data. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 515–522. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Lu, X., et al.: Deformation Analysis for 3D Face Matching. In: IEEE Workshops on Application of Computer Vision, pp. 99–104 (2005)

    Google Scholar 

  6. Irfanoglu, M.O., et al.: 3D Shape-Based Face Recognition Using Automatically Registered Facial Surfaces. In: Int. Conference Pattern Recognition, vol. 4, pp. 183–186 (2004)

    Google Scholar 

  7. Xu, D., et al.: 3D face recognition using moment invariants. In: IEEE Int. Conference on Shape Modeling and Applications, pp. 261–262 (2008)

    Google Scholar 

  8. Wong, H.S., et al.: 3D head model classification by evolu- tionary optimization of the extended Gaussian image representation. Pattern Recognition 37, 2307–2322 (2004)

    Article  MATH  Google Scholar 

  9. Xu, C., et al.: A New Attempt to Face Recognition Using Eigenfaces. In: Proceedings of the Asian Conference on Computer Vision, vol. 2, pp. 884–889 (2004)

    Google Scholar 

  10. Vogel, J., et al.: Categorization of natural scenes: local vs. global information. In: Proceedings of Symposium on Applied Perception in Graphics and Visualization, APGV (2006)

    Google Scholar 

  11. Pan, G., et al.: 3D Face recognition by profile and surface matching. In: IEEE/INNS International Joint Conference on Neural Networks, vol. 3, pp. 2169–2174 (2003)

    Google Scholar 

  12. Xu, C., et al.: Automatic 3D Face recognition combining global geometric features with local shape variation information. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 302–307 (2004)

    Google Scholar 

  13. Gokberk, B., et al.: Rank-based decision fusion for 3D shape-based face recognition. LNCS, pp. 1019–1028. Springer, Heidelberg (2005)

    Google Scholar 

  14. Al-Osaimi, F.R., et al.: Integration of local and global geometrical cues for 3D face recognition. Pattern Recognition 41(3), 1030–1040 (2008)

    Article  MATH  Google Scholar 

  15. Ashbrook, A.P., Fisher, R.B., Robertson, C., Werghi, N.: Finding surface correspondence for object recognition and registration using pairwise geometric histograms. In: Burkhardt, H., Neumann, B., et al. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 674–686. Springer, Heidelberg (1998)

    Google Scholar 

  16. Osada, R., et al.: Matching 3d models with shape distributions. In: Int. Conf. on Shape Modeling and Applications, Genova, Italy, pp. 154–166 (2001)

    Google Scholar 

  17. Planitz, B.M., et al.: The correspondence framework for 3D surface matching algorithms. Computer Vision and Image Understanding 97(3), 347–383 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Werghi, N. (2009). Extracting Structured Topological Features from 3D Facial Surface: Approach and Applications. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics