Abstract
In this paper, the problem of fusing colour information at the feature level using kernel based feature extraction techniques is considered within the framework of a face verification system. A few statistical feature extraction algorithms including kernel based methods are reviewed first. An automatic parameter selection process is then applied to optimise the adopted kernel methods. In an extensive experimentation on intensity images of the XM2VTS database, we show that the optimised nonlinear kernel methods in general and the GDA algorithm in particular outperform the basic linear approaches. The experimentation is repeated for colour images by concatenating the R,G,B vectors. We demonstrate that by combining the colour information using the proposed method, the performance of the resulting decision making scheme considerably improves.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of cognitive neuroscience 3(1) (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. on Pattern Recognition and Machine Intelligence 19(7), 711–720 (1997)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Schlkopf, B., Smola, A., Muller, K.R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Journal of Neural Comput. 10(5), 1299–1319 (1998)
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Muller, K.R.: Fisher Discriminant Analysis with Kernels. In: IEEE Workshop on Neural Networks and Signal Processing IX, Madison, WI, USA, pp. 41–48 (1999)
Baudat, G., Anouar, F.: Generalized Discriminant Analysis Using a Kernel Approach. Journal of Neural Computing 12(10), 2385–2404 (2000)
Yang, M.H.: Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recognition Using Kernel Methods. In: IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2002), pp. 205–211 (2002)
Chen, C.K., Yang, J.Y., Yang, J.: Fusion of PCA and KFDA for Rapid Face Recognition. In: IEEE International Conference on Control, Automation, Robotics and Vision, pp. 375–379 (2004)
Yang, J., Jin, Z., Yang, J.Y., Zhang, D., Frangi, A.F.: Essence of kernel Fisher Discriminant: KPCA plus LDA. Jouranl of Pattern Recognition 37(10), 2097–2100 (2004)
Xu, Y., Sun, B., Zhang, C.Y., Jin, Z., Liu, C.C., Yang, J.Y.: An Implementation Framework For Kernel Methods With High-Dimensional Patterns. In: IEEE International Conference on Machine Learning and Cybernetics, pp. 3271–3276 (2006)
Sadeghi, M., Kittler, J.: A Comparative Study of Data Fusion Strategies in Face Verification. In: 12th European Signal Processing Conference, Vienna, Austria (2004)
Sadeghi, M., Khoshrou, S., Kittler, J.: Colour Feature Selection for Face Authentication. In: International Conference on Macine Vision Applications, MVA 2007, Japan (2007)
Sadeghi, M., Khoshrou, S., Kittler, J.: SVM-Based Selection of Colour Space Experts for Face Authentication. In: Advances in Biometrics, International Conference, ICB, pp. 907–916 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salimi, F., Sadeghi, M.T., Moin, M.S., Kittler, J. (2009). Face Verification Using Colour Kernels. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-02611-9_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02610-2
Online ISBN: 978-3-642-02611-9
eBook Packages: Computer ScienceComputer Science (R0)