Skip to main content

COBVIS-D: A Computer Vision System for Describing the Cephalo-Ocular Behavior of Drivers in a Driving Simulator

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Abstract

This paper describes current research combining computer vision, virtual reality and kinesiology for analyzing the cephalo-ocular behavior of drivers in realistic driving contexts. The different components of the system are described and results are provided for each one. The ultimate goal of the system is to achieve automatic analysis of drivers’ behavior in order to design training programs tailored to their driving habits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leinhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proc. Int. Conf. Image Processing, Rochester, NY, vol. 1, pp. 900–903 (2002)

    Google Scholar 

  2. Viola, P., Jones, M.J.: Rapid Object Detection Using A Boosted Cascade Of Simple Features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I–511–I–518 (2001)

    Google Scholar 

  3. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. European Conference on Computational Learning Theory, pp. 23–37 (1995)

    Google Scholar 

  4. Viola, P., Jones, M.: Robust Real-Time Face Detection. Int. J. Comput. Vision 57, 37–154 (2004)

    Article  Google Scholar 

  5. Cristinacce, D., Cootes, T.: Facial Feature Detection using AdaBoost with Shape Constraints. In: Proc. British Machine Vision Conference, pp. 231–240 (2003)

    Google Scholar 

  6. Zhu, Z., Ji, Q.: Robust Pose Invariant Facial Feature Detection and Tracking in Real-Time. In: Proc. Int. Conf. Pattern Recognition, pp. 1092–1095 (2006)

    Google Scholar 

  7. Wang, Y., Liu, Y., Tao, L., Xu, G.: Real-Time Multi-View Face Detection and Pose Estimation in Video Stream. Conf. Pattern Recognition 4, 354–357 (2006)

    Google Scholar 

  8. Kearns, M.: Thoughts on Hypothesis Boosting (unpublished manuscript, 1988)

    Google Scholar 

  9. Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Proc. Int. Conf. Computer Vision, vol. 2, p. 1150 (1999)

    Google Scholar 

  10. Kanaujia, A., Huang, Y., Metaxas, D.: Emblem detections by tracking facial features. In: Proc. IEEE Computer Vision and Pattern Recognition, p. 108 (2006)

    Google Scholar 

  11. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Burt, P.J., Adelson, E.H.: The Laplacian Pyramid as a compact image code. IEEE Transactions on Communications 4, 532–540 (1983)

    Article  Google Scholar 

  13. Gorodnichy, D.: On Importance of Nose For Face Tracking. In: Proc. IEEE Intern. Conf. on Automatic Face and Gesture Recognition (FG 2002), Washington, DC, pp. 181–186 (2002)

    Google Scholar 

  14. Ntawiniga, F.: Head motion tracking in 3D space for drivers. Master’s Degree Thesis, Electrical Engineering, Laval University, Quebec, Canada, p. 98 (2008)

    Google Scholar 

  15. Ekman, P., Friesen, W.V.: Facial Action Coding System. Consulting Psychologists Press, Inc., Palo Alto, CA (1978)

    Google Scholar 

  16. Lalonde, M., Byrns, D., Chapdelaine, C., Gagnon, D.: Progress Report of CRIM’s Activities for the COBVIS-D Project for the Period April 2007 to March 2008, Montréal (CRIM-08/04-02) (2008)

    Google Scholar 

  17. Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N., Laurendeau, D.: Real-Time Eye Blink Detection with GPU-Based SIFT Tracking. In: Proc. 4th Canadian Conference on Computer and Robot Vision, CRV 2007 (2007)

    Google Scholar 

  18. http://www.face-rec.org/

  19. Delac, K., Grgic, M.: Face Recognition. I-Tech Education and Publishing, Austria (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beauchemin, S. et al. (2009). COBVIS-D: A Computer Vision System for Describing the Cephalo-Ocular Behavior of Drivers in a Driving Simulator. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics