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Abstract. In this paper, we present an algorithm for learning struc-
tures of Bayesian models in multiple projection spaces. We assume that
a visual phenomenon can be projected on a set of spaces that share a
common subspace. We propose that models of individual projections can
be related through probability distributions over the shared subspace. We
develop a learning method that estimates simultaneously the structure
and parameters of an integrated model of the target phenomena. This in-
tegrated model combines information from all individual projections. The
model learning procedure is accomplished by maximizing the Bayesian
Information Criterion within the setup of the Expectation-Maximization
algorithm. Finally, we show how the method can be applied to the prob-
lem of learning and recognizing human motions.

Keywords: constrained Bayesian trees, substructure discovery, learn-
ing, E.M. algorithm, motion recognition.

1 Introduction

In computer vision, recognition (e.g., human-motion, objects, faces, textures) is
usually accomplished based on models learned from measurements performed
in projection spaces (e.g., edge-maps, 3D range data, intensity images). Unfor-
tunately, important information about the observed phenomenon is lost during
projection space creation (e.g., 3D to 2D mapping, noisy sensors, single-view
camera, etc). To overcome this problem, it would be beneficial to combine mod-
els from individual projections into a single model. Neuroscientific [3, 4] evidence
suggests that recognition can be more effective by combining different types of
visual information. The combination of multiple visual sources can help solve
problems such as image segmentation [13, 16], edge detection [11], object recog-
nition [15, 9], and action analysis [14, 17]. However, it is not clear how data from
different projection spaces can be used to build a unified structural model of a
visual phenomenon.

In this paper, we propose an algorithm for learning probabilistic structural
models of visual phenomena in multiple projection spaces. Our method’s key as-
sumptions are: (1) Projection spaces can be decomposed into a location subspace
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and a measurement subspace, and (2) The location subspace is shared among all
projections, while the measurement subspace is unique to each projection. Our
main contributions are twofold. First, we show how multiple projection mod-
els can be combined into a single integrated model. Secondly, we provide an
Expectation-Maximization (E.M.) algorithm for estimating both the structure
and parameters of the integrated model in the presence of augmented projec-
tion spaces (i.e., location subspaces of lower dimension require augmentation for
subspace sharing). Our learning approach has three main components: (1) Con-
strained maximization of the expectation in the E.M. algorithm; (2) Parameter
initialization guided by models in non-augmented spaces; and (3) Structure se-
lection based on the partial models’ approximate contributions to the Bayesian
Information Criterion (BIC). Finally, we perform a set of validating experiments
on synthetic data, followed by a classification experiment on human motion data.

Our focus is on model-based recognition approaches. Model-based approaches
include higher-level knowledge about the data using a previously learned model.
A number of related approaches for object recognition [9] and action analysis [14,
8] use graphical models to describe both the overall structure and appearance
of visual phenomena. However, model selection and the availability of prior in-
formation are issues still to be addressed.

An important but unexplored aspect of model-based approaches is the com-
bination of different sources of information about a visual phenomenon. Multiple
types of information are often integrated using combinations of classifiers [15, 11,
13]. In these approaches, a final classifier is built using a weighted combination
of individual classifiers created for every information source. For example, Landy
and Kojima [11] in their edge-detection approach combined different texture cues
using a weighted average based on cue reliability. Nilsback and Caputo [15] pro-
pose a cue-integration framework based on a linear combination of margin-based
classifiers. Leibe et al. [13] use top-down segmentation to integrate multiple vi-
sual cues for object detection. In contrast, Niebles and Fei-Fei [14] propose an
action-recognition approach that combines multiple feature types into a con-
stellation of bags of features. Filipovych and Ribeiro [9] propose a part-based
object model that incorporates information from multiple cues for object recog-
nition. However, their semi-supervised approach to learning object models from
segmented images does not scale to general data.

As exact learning and inference are usually intractable in real scenarios, au-
thors often resort to approximate methods. However, approximate methods, such
as the E.M. algorithm, are sensitive to parameter initialization. Moreover, cor-
rect initialization is difficult in the presence of significant levels of noise in the
training data. Additionally, model structure is not always known. In this case,
the learning algorithm must be able to discover both the structure and param-
eters of the underlying model. To accomplish this, various criteria that mea-
sure “goodness” of the specific model are often used. Among commonly used
model selection criteria are the Bayesian Information Criterion (BIC) [10] and
the Akaike Information Criterion (AIC) [1]. Here, a search algorithm is employed
to discover the model structure that receives a high score based on the selected



Learning in Multiple Projection Spaces 3

criterion. However, this process may become computationally intensive as the
criterion needs to be evaluated for every possible model structure.

2 Unified Model of Multiple Projection Spaces

Let V represent the space of all visually perceivable phenomena. These phenom-
ena can be any thing perceived by our vision system (e.g., objects, motions,
colors, scenes, etc). Let Φi : V → Si be a family of general mappings or projec-
tions from V into a set of spaces Si, with i = 1, . . . , n. Accordingly, a specific
target phenomenon F ∈ V can be projected onto a set of spaces S1, ...,Sn under
the corresponding mapping Φi. In this paper, Φi is a generalization of a visual
cue extraction process, while Si is the space of all visual phenomena expressed
in terms of a specific cue. For example, if F represents a human face, an edge-
detection method would be the cue extraction process, and the face’s edge-map
would be the extracted cue in the space Si. We are particularly interested in
modeling the interplay between visual cues extracted from visual phenomena. In
many computer vision applications, it is common for spaces Si to intersect along
a common subspace. By definition, this intersection is itself a subspace of Si.
We denote this shared subspace by L. For example, in a multiple cue represen-
tation of an object, L can be the subspace of image pixel coordinates shared by
a number of different visual cue measurements. In the case of human activities
in videos, L may represent the spatio-temporal coordinates of the measurements
performed in corresponding locations. Considering this space intersection, we
further assume that Si can be decomposed into two subspaces Li and Di such
that Si = Li × Di, with Li ⊂ L and Di ∩ Li = ∅. Here, subspace L is shared by
all Si while subspace Di is specific to Si. As expected, subspaces Li may have
lower dimensionality than the common subspace L. Additionally, we assume that
values from any two subspaces Di and Dj are independent for i 6= j.

In computer vision, the model of a target phenomenon can be realized based
on measurements performed on projected spaces. Let Mi be a model of F in
space Si where the combination of models M1, . . . ,Mn explain F. Here, Mi is
based solely on measurements obtained from Si, and we will refer to Mi as partial
models of phenomenon F. The level of dependence between partial models can be
encoded through probability functions over the common subspace L. Assuming
that the probabilities of projection spaces are conditionally independent given
F, the joint probability of the phenomenon and its projections can be given by:

p(F,S1, ...,Sn) = p(F)p(S1, ...,Sn|F) = p(F)
∏

i

p(Si|Mi) (1)

Let Ci ∈ L be the origin of partial model Mi. This origin represents the
partial model’s abstract location in the subspace L in a similar manner as does
the center of mass of a system of particles [7]. In our model, the prior distribution
in (1) describes the relationships between partial models through their origins.
Assuming that the probabilities of origins are conditionally independent given
corresponding models (e.g., the origin of a model describing edge-map projection
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is independent of a model in the space of surface normals), and by applying
Bayes’ rule, we can rewrite p(F) as:

p(F) = p(C1, ...,Cn)p(M1, ...,Mn|C1, ...,Cn) ∝ p(C1, ...,Cn)
∏

i

p(Mi)p(Ci|Mi)

(2)

By plugging (2) into (1), we obtain in the following parametrized form:

p(F,S1, ...,Sn,θ) ∝ p(C1, ...,Cn|ξ)︸ ︷︷ ︸ ∏
i

p(Si|Mi, ζi)︸ ︷︷ ︸ p(Mi|ζi)︸ ︷︷ ︸ p(Ci|Mi, ζi)︸ ︷︷ ︸
intermodel

prior

intramodel

likelihood

intramodel

prior

model origin

likelihood

(3)

where θ is the set of parameters consisting of a subset of intramodel parameters
ζi, and a subset of parameters ξ of the intermodel prior.

As mentioned above, dim(Li) ≤ dim(L) for some Si. For instance, in the
case of mappings obtained from frontal human faces, the subspace of 2D im-
age pixel locations has lower dimensionality than the subspace of the 3D range
image points. Consequently, the model in (3) requires the subspace Li to be
augmented to L. This augmentation results in extending original subspace vec-
tors by additional coordinates Li

aug = (laug
i,m+1, . . . , l

aug
i,n ), where dim(Li) = m

and dim(L) = n. Figure 1(a) illustrates the subspace augmentation process

original 
projec-on 

ambiguity induced by 
augmenta-on 

(a) (b)

Fig. 1. (a) Subspace augmentation. (b) Reducing state space for augmented model
initialization.

in which a phenomenon is projected onto three spaces S1, S2, and S3, where
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dim(L3) < dim(L). Notice how augmentation of L3 to L introduces ambiguity
into the space L×D3. Space augmentation significantly increases the uncertainty
of models created in these spaces. This uncertainty is reflected directly in the
model learning procedure (e.g., larger probability space, increased noise levels,
reduced sampling coverage, etc.). In our work, we address this issue by sepa-
rately modeling augmented and non-augmented spaces. Accordingly, we denote
by MU1 , . . . ,MUp

the set of models for projection spaces that did not require
augmentation, and by MKp+1 , . . . ,MKn the set of models in augmented spaces.
Our learning algorithm uses models in the non-augmented spaces to initialize
parameters of the augmented space models.

3 Constrained Learning in Multiple Projection Spaces

The parameters of the proposed model can be learned using the E.M. algo-
rithm [5]. A classical E.M. procedure iterates between the E-Step:

p(Z|F,S1, ...,Sn,θ
old) (4)

and the M-Step: θnew = arg maxθ EZ

{
log p(Z,F|L×Di, ...,L×Dn,θ) |F,θold

}
,

where original subspaces Li have been augmented to L. Here, Z is a set of la-
tent variables indicating the specific assignment of states of the model variables.
However, the classical M-Step does not account for possible subspaces’ augmen-
tations. This may cause the learned model to erroneously explain data beyond
the original spaces. Thus, we require that models explain data strictly within the
original spaces by enforcing that p(Mi|L×Di) = p(Mi|Li ×Di), and maximize
the expectation over original subspaces:

θnew = arg max
θ

[
max

Laug
1 ,...,Laug

n

EZ

{
log p(Z,F|L×Di, ...,L×Dn,θ)|F,θold

}]
(5)

Here, Laug
i = ∅ if space Si was not augmented.

3.1 Initialization

The above E.M. algorithm is sensitive to initialization. Better initialization can
be obtained in non-augmented spaces as they usually have lower uncertainty
level than the augmented ones. We propose to use non-augmented space models
to initialize model parameters in augmented spaces. This motivates the following
form of the intermodel prior (we assume that augmented projection models are
conditionally independent given the non-augmented space models):

p(C1, ...,Cn|ξ) = p(CU1 , ...,CUp
|ξU) p(CKp+1 , ...,CKn

|CU1 , ...,CUp
, ξK)

= p(CU1 , ...,CUp |ξU)
n∏

i=p+1

p(CKi |CU1 , ...,CUp , ξKi
) (6)
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The initialization of model parameters can now be performed as follows:

Step 1: Initialize models in non-augmented spaces. Use the standard
E.M. to initialize parameters of non-augmented space models, i.e., evaluate
p(ZU|F,SU1 , ...,SUp

,θold
U ), and obtain:

θnew
U = arg maxθU

EZU

{
log p(ZU,F|SU1 , ...,SUp ,θU)|F,θold

U

}
, θU = {ζU, ξU}.

Step 2: Initialize global model parameters. Let ξ0
Ki

be the initial values of
the intermodel parameters of conditional probabilities in (6). Estimated model
origins can be obtained by: C0

Ki
= arg maxCKi

p(CKi |CU1 , ...,CUp , ξ
0
Ki

), where
C0

Ki
= (l0Ki,1

, ..., l0Ki,n
) ∈ L. For every estimated origin C0

Ki
, we select a subspace

S0
Ki
⊆ SKi

such that corresponding augmented coordinates are close to the aug-
menting coordinates (l0Ki,m+1, ..., l

0
Ki,n

) of origin C0
Ki

. This process is represented
in Figure 1.(b) and can be described by:

S0
Ki

=
{
v ∈ L×DKi P (v|l0Ki,m+1, ..., l

0
Ki,n, σ) > const

}
(7)

Here, σ are acceptable deviation from the values (l0Ki,m+1, ..., l
0
Ki,n

). Initial values
for non-augmented spaces’ model parameters can be obtained by (E-Step):

p(ZKi
|F,S0

Kp+1
, ...,S0

Kn
, ζKi

) (8)

and M-Step:

ζnew
Ki

= arg max
ζKi

EZKi

{
log p(ZKi

,F|S0
Ki
, ζKi

) |F, ζold
Ki

}
(9)

Given the estimated ζKi
and subspaces S0

Ki
, the origins C0

Ki
can now be reesti-

mated as C0
Ki

= arg maxCKi
p(CKi

|MKi
). This in turn allows us to reestimate

ξ0
Ki

in (6).

Step 3: Reestimate model parameters. Given the model parameters ob-
tained in Steps 1 and 2, we re-estimate global model parameters using (4) and
(5). However, ξ0

Ki
in Step 2 may be far from optimal. To solve this problem, we

add a number of redundant augmented space models into the global model by
obtaining a set of random samples of ξKi

. We then gradually reduce the number
of augmented projection models as described next.

3.2 Model Selection

Let ξ0
Ki,1, ..., ξ

0
Ki,m be a set of m samples obtained for the intermodel parameters

ξKi
in (6). For every sample ξ0

Ki,j , we obtain the reduced space given by (7) and
initial parameters of the augmented space model following (8) and (9). This
results in a number of redundant augmented space models that are subsequently
removed by a search for the best configuration of augmented space models using
a gradient ascent search over the Bayesian Information Criterion (BIC). We
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Algorithm 1: Model selection algorithm
Input: Initialized global model with redundant partial models
Output: Global Model
Update model parameters following Equations 4 and 5.
Calculate the value of the log p(D|Fh) for the global model.
while log p(D|Fh) > Threshold do

1. Remove the partial model with the largest value of log p(D|Mh
i ).

2. Update model parameters following Equations 4 and 5.
end

propose an algorithm that iteratively prunes redundant augmented space models
based on their approximate contribution to the overall BIC. Formally, for an
alternative global model hypothesis Fh, the BIC is given by [10] as log p(D|F h) =
ML F h + d F h

2 logN , where ML corresponds to the maximum likelihood (ML)
configuration θ̂ of θ, d is the number of model variables, and N is the number
of data instances in D. Let ZMh

i
be the assignment of states in the overall ML

configuration associated with the variables of model Mh
i . The approximate effect

of including partial model Mh
i into the global model can now be estimated as:

log p(D|Mh
i ) = MLMh

i
+
dMh

i

2
logN (10)

where MLMh
i

= p(ZMi
|Mh

i , ζ̂), and ζ̂ is the subset of parameters in θ̂ associated
with model Mh

i . The model selection algorithm is described by Algorithm 1.

3.3 Selecting Model Origins

We now define the specific form of the model origin term in (3) by consider-
ing that each model Mi is a Bayesian network represented by a directed acyclic
graph. We select one of the graph nodes as the model’s landmark s(i)

r (Fig-
ure 2(a)). Mi’s origin can be expressed through the coordinates of the graph’s
landmark node in subspace Li.

4 Experimental Results

4.1 Synthetic Data

We assessed our method’s validity on a synthetically generated dataset consisting
of two projection spaces: S1 = L1 × D1, and S2 = L2 × D2, where L1 = R3,
L2 = R2, and D1 = D2 = R3. A tree-structured BN model was created in
each of the spaces such that conditional distributions encode relative distances
between the parent node and its children (Figure 2(b)). Following Figure 2(b),
we can perform the following factorization:

p(M) = p(ar)p(a1)p(a1|ar)p(a2)p(a2|ar) p(br)p(br|ar)p(b1)p(b1|br)p(b2)p(b2|br) (11)
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(a) (b)

Pose 2 

Dynamics 

Pose 1 

(c)

Fig. 2. (a) Bayesian network with a landmark node; (b) graph of the synthetic model;
and (c) example graph of the action model.

We further simplify the model by using Gaussian densities, and assuming that
priors are independent of measurements obtained in subspace L. We added noise
to the sampled data points. After model learning, classification was performed
with the learned model on test data containing the same amount of noise of
the training data. First, we analyzed how the constrained maximization in (5)
improves the performance of the algorithm. Secondly, we assessed the effect of
the model selection procedure as well as performing guided initialization in our
learning algorithm. Finally, we compared the performance between our learning
method and the standard E.M. algorithm with randomly initialized parameters.
Figure 3 summarizes our results. The plots represent evolution of the area under
the ROC curve (AUC) obtained for the classification results with the amount
of augmented space noise. The noise percentage in the non-augmented space is
100% for Figure 3(a), 500% for Figure 3(b), and 1500% for Figure 3(c), respec-
tively. Results were averaged over 50 runs of the algorithm, and approximated
with a least squares estimator. The results suggest that the components of our
learning algorithm allow to learn a better model of the target phenomenon.

4.2 Human Motion Recognition

We now apply our learning method to the problem of learning action models
from unsegmented video sequences. A human action can be projected into sev-
eral projection spaces. The first projection space is represented by the video’s
spatio-temporal volume SV and can be decomposed into two subspaces: the sub-
space of spatio-temporal locations LV, and the subspace of measurements DV

at corresponding spatio-temporal locations (SV = LV × DV). DV can be rep-
resented, for example, by spatio-temporal features [6, 12]. Alternatively, actions
can also be projected on the 2D space of static pose images SP = LP×DP. Here,
space SP represents pose information contained in a single frame, and can be
decomposed into the 2D locations subspace LP and a subspace of measurements
at specific coordinates DP. In order for spaces SV and SP to have a common
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(a) (b) (c)

Fig. 3. AUC evolution with the the augmented space’s noise amount. Plots obtained for
the non-augmented space’s noise: (a) 100%, (b) 500%, and (c) 1500%. Legend indicates
which properties were included in the E.M. learning: (i) guided initialization; (o) model
selection procedure; (m) standard E-Step of EM algorithm substituted with constrained
optimization in Equation 5; and (none) for learning performed with standard EM.

subspace L, subspace LP has to be augmented with an additional temporal di-
mension. The elements of the common subspace consequently are (lx, ly, lt) ∈ L,
where lt ∈ Laug

P . Next, we describe specific forms of models MV and MP.

Constellation model of pose. A pose model MP can be represented by a
Bayesian network in the constellation framework. Consequently, pose P can be
subdivided intoNP non-overlapping subregions P = {(a(P)

1 ,d(P)
1 ), . . . , (a(P)

NP
,d(P)

NP
)},

where the components of each pair (a(i)
j ,d(i)

j ) are local appearance a and spatio-
temporal location d of subregion j for the model of pose P, respectively. For sim-
plicity, we assume that pose subregions can be arranged in a star-graph configu-
ration in which a particular node is assigned to be a landmark node (a(P)

r ,d(P)
r )

for pose P. The distributions p(d(P)
j |d

(P)
r ) encode the relative spatial-temporal

displacements of the non-landmark parts with respect to the landmark part. Ad-
ditionally, if an action is projected on multiple pose spaces, a set of pose models
{MP1 , ...,MPK

} explain the set of existing pose projections.

Constellation model of motion dynamics. In a similar way, we assume a
star-graph constellation model in the spatio-temporal volume. Accordingly, let
V = {(a(V)

1 ,d(V)
1 ), . . . , (a(V)

NV
,d(V)

NV
)} be a set of NV spatio-temporal parts in V. A

node is assigned to be the dynamics model’s landmark node, (a(V)
r ,d(V)

r ). Given
model MV in non-augmented space SV, and a set of models {MP1 , ...,MPK

} in
augmented spaces {SP1 , ...,SPK

}, the action model graph has the form shown in
Figure 2(c). Intermodel priors can be modeled by Gaussian densities.

Discovering pose models. In the unsupervised learning of human poses from
videos, the optimal number of models is unknown (i.e., the number of augmented
spaces). Therefore, in the model learning algorithm (i.e., Algorithm 1), we do
not enforce the requirement to have at least one model for each projection space.
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Classification Results. We tested our approach on the human action dataset
from [2] (Figure 4(a)). The dataset contains nine action classes performed by
nine different subjects. In order to obtain the initial pose models, temporal
coordinates of the origins of pose models were manually set to: l0P1,t = −20,
l0P2,t = −10, l0P3,t = 0, l0P4,t = 10, l0P5,t = 20. The value l0Pi,t

are the temporal
displacement of pose Pi from the dynamics model’s origin. Feature extraction
steps were performed as in [8]. A “leave-one-out” evaluation scheme was adopted
for evaluation. The confusion matrix generated by our classification results is

(a) (b)

Fig. 4. Datasets in our experiments. (a) Sample frames from the human motion
dataset [2]. (b) Confusion matrix for our motion classification experiment (91.34%
correct classification).

.

shown in Figure 4(b), and presents a 91.34% overall recognition rate. This rate
is superior to the 72.8% classification rate reported by Niebles and Fei-Fei [14].

5 Conclusions

In this paper, we presented an approach for learning both the structure and
parameters of models in multiple projection spaces. Our learning algorithm in-
corporates the following three main components: (1) Constrained maximization
of the expectation in the E.M. algorithm; (2) Model parameter initialization
guided by the models in non-augmented spaces; and (3) A model structure se-
lection procedure based on approximate contributions of partial models to the
Bayesian Information Criterion. Finally, we performed a set of validating ex-
periments, and showed that our model performs well on the human motion
classification task. Future directions of investigation include studying the effect
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of choosing initial intermodal parameters. Additionally, the applicability of our
model to the object recognition task has to be demonstrated.
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