Skip to main content

Probabilistic Scene Analysis for Robust Stereo Correspondence

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

  • 2267 Accesses

Abstract

Most area-based approaches for stereo correspondence are leading to a large set of non-correct matches in the generated disparity-map. These are mainly caused by low textured areas, half occlusions, discontinuities in depth and the occurrence of repetitive patterns in the observed scene. This paper proposes a novel framework where non salient regions inside the stereo pair are identified previously to the matching, whereat the decision about the involvement of particular areas in the correspondence analysis is realized based on the fusion of separate confidence maps. They describe the possibility for a correct matching based on different criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hartley, R., And Zisserman, A.: Multiple view geometry in computer vision, 4th edn. Cambridge Univ. Press, Cambridge (2006)

    MATH  Google Scholar 

  2. Klette, R., Koschan, A., Schlüns, K.: Computer Vision: räumliche Information aus digitalen Bildern; mit 64 Übungsaufgaben. Braunschweig u.a.: Vieweg (1996)

    Google Scholar 

  3. Yuille, A.L., Poggio, T.: A Generalized Ordering Constraint for Stereo Correspondence. A.I. Memo 777 (1984)

    Google Scholar 

  4. Mayhew, J.E.W., Frisby, J.P.: Psychophysical and computational studies towards a theory of human stereopsis. Artificial Intelligence 17(1-3), 349–385 (1981)

    Article  Google Scholar 

  5. Barnard, S.T., Fischler, M.A.: Computational Stereo. Computing surveys 14(4), 553–572 (1982)

    Article  Google Scholar 

  6. Alvarez, L., Deriche, R., Sánchez, J., Weickert, J.: Dense disparity map estimation respecting image discontinuities: A PDE and scale-space based approach. Journal of Visual Communication and Image Representation 13(1-2), 3–21 (2002)

    Article  Google Scholar 

  7. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Transactions on PAMI 25(8), 993–1008 (2003)

    Article  Google Scholar 

  8. Tombari, F., Mattoccia, S., Stefano, L.D.: Segmentation-based adaptive support for accurate stereo correspondence (2007)

    Google Scholar 

  9. Mayoral, R., Lera, G., Perez Ilzarbe, M.J.: Evaluation of correspondence errors for stereo. IVC 24(12), 1288–1300 (2006)

    Article  Google Scholar 

  10. HirschmüLler, H.: Improvements in real-time correlation-based stereo vision. In: Proceedings of Workshop on Stereo and Multi-Baseline Vision, Kauai, Hawaii, pp. 141–148 (December 2001)

    Google Scholar 

  11. JIANG, X, Lecture Notes for the module "Image analysis" at the University of Münster - Winter semester 2005/2006 (2005)

    Google Scholar 

  12. Anderson, B.L.: Stereovision: Beyond disparity computations. Trends in Cognitive Sciences 2(6), 214–222 (1998)

    Article  Google Scholar 

  13. Anderson, B.L.: The role of partial occlusion in stereopsis. Nature 367(6461), 365–368 (1994)

    Article  Google Scholar 

  14. Anderson, B.L., Nakayama, K.: Toward a general theory of stereopsis: Binocular matching, occluding contours, and fusion. Psychological Review 101(3), 414–445 (1994)

    Article  Google Scholar 

  15. Yang, Q., Deng, Y., Tsang, X., Lin, X.: Occlusion handling in stereo imaging (2007)

    Google Scholar 

  16. Schmidt, J., Niemann, H.: Dense disparity maps in real-time with an application to augmented reality, pp. 225–230 (2002)

    Google Scholar 

  17. Laptev, I., Lindeberg, T.: Space-time interest points, pp. 432–439 (2003)

    Google Scholar 

  18. Wang, H., Ma, K.: Spatio-temporal video object segmentation via scale-adaptive 3D structure tensor. Eurasip Journal on Applied SP 2004(6), 798–813 (2004)

    Article  Google Scholar 

  19. Kamiya, S., Kanazawa, Y.: Accurate image matching in scenes including repetitive patterns. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 165–176. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41(1-2), 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on PAMI 24(5), 603–619 (2002)

    Article  Google Scholar 

  22. Christoudias, C.M., Georgescu, B., And Meer, P.: Synergism in low level vision, pp. 150–155 (2002)

    Google Scholar 

  23. Frank, A.: On Kuhn’s Hungarian Method - A tribute from Hungary. TR-2004-14. Budapest, Hungary: Egervary Research Group on combinational optimization (2004)

    Google Scholar 

  24. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1-3), 7–42 (2002)

    Article  MATH  Google Scholar 

  25. Zabih, R., Woodfill, J.: Non-parametric Local Transforms for Computing Visual Correspondance. IEEE Transactions on PAMI (1994)

    Google Scholar 

  26. Bhat, D.N., Nayar, S.K.: Ordinal measures for image correspondence. IEEE Transactions on PAMI 20(4), 415–423 (1998)

    Article  Google Scholar 

  27. Jähne, B., Haussecker, H.: Computer vision and applications: a guide for students and practitioners. Academic Press, San Diego (2000)

    MATH  Google Scholar 

  28. Siew, L.H., Hodgson, R.M., Wood, E.J.: Texture Measures for Carpet Wear Assessment. IEEE Transactions on PAMI 10(1), 92–105 (1988)

    Article  Google Scholar 

  29. Bergmann, R., Nachlieli, H., Ruckenstein, G.: Detection of Textured Areas in Images Using a Disorganization Indicator Based on Component Counts. HPL-2005-175(R.1) (2007)

    Google Scholar 

  30. Feldman, D., Weinshall, D.: Motion segmentation and depth ordering using an occlusion detector. IEEE Transactions on PAMI 30(7), 1171–1185 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steffens, M., Aufderheide, D., Kieneke, S., Krybus, W., Kohring, C., Morton, D. (2009). Probabilistic Scene Analysis for Robust Stereo Correspondence. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics