Abstract
A taxonomy encompasses not only a classification methodology, but also an explicative theory of the phenomena that justify such classification. This paper introduces a taxonomy for noise in images of paper documents and details the Physical Noises according to the proposed taxonomy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baird, H.S.: Document image defect models and their uses. In: ICDAR 1993, pp. 62–67 (1993)
Cheriet, M., Moghaddam, R.F.: DIAR: Advances in Degradation Modeling and Processing. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 1–10. Springer, Heidelberg (2008)
da Silva, J., et al.: A New and Efficient Algorithm to Binarize Document Images Removing Back-to-Front Interference. Journal of Universal Computer Science (14), 299–313 (2008)
Lins, R.D., et al.: An Environment for Processing Images of Historical Documents. Microprocessing & Microprogramming (40), 939–942 (1993)
Sharma, G.: Show-through cancellation in scans of duplex printed documents. IEEE Transactions on Image Processing 10(5), 736–754 (2001)
Lins, R.D., et al.: Detailing a Quantitative Method for Assessing Algorithms to Remove Back-to-Front Interference in Documents. Journal of Universal Computer Science 14, 266–283 (2008)
Meng, G., et al.: Circular Noises Removal from Scanned Document Images. In: ICDAR 2007, pp. 183–187. IEEE Press, Los Alamitos (2007)
Möri, D., Bunke, H.: Automatic interpretation and execution of manual corrections on text documents. In: Handbook of Character Recognition and Document Image Analysis, pp. 679–702. World Scientific, Singapore (1997)
Stevens, J., Gee, A., Dance, C.: Automatic processing of document annotations. In: British Machine Vision Conference, vol. 2, pp. 438–448 (1998)
Guo, J.K., Ma, M.Y.: Separating handwritten material from machine printed text using hidden markov models. In: ICDAR 2001, pp. 436–443 (2001)
Zheng, Y., Li, H., Doermann, D.: The segmentation and identification of handwriting in noisy document images. In: Lopresti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 95–105. Springer, Heidelberg (2002)
Nakai, T., Kise, K., Iwamura, M.: A method of annotation extraction from paper documents using alignment based on local etc. In: ICDAR 2007, pp. 23–27. IEEE Press, Los Alamitos (2007)
Caldas Pinto, J.R., et al.: Underline Removal on Old Documents. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 226–233. Springer, Heidelberg (2004)
Bruni, V., Ferrara, P., Vitulano, D.: Color scratches removal using human perception. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 33–42. Springer, Heidelberg (2008)
Wirth, M., Bobier, B.: Suppression of Noise in Historical Photographs Using a Fuzzy Truncated-Median Filter. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1206–1216. Springer, Heidelberg (2007)
Ávila, B.T., Lins, R.D.: A New Algorithm for Removing Noisy Borders from Monochromatic Documents. In: ACM-SAC 2004, March 2004, pp. 1219–1225. ACM Press, New York (2004)
Ávila, B.T., Lins, R.D.: Efficient Removal of Noisy Borders from Monochromatic Documents. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 249–256. Springer, Heidelberg (2004)
Lins, R.D.: A Global Taxonomy for Noises in Paper Documents (in preparation)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lins, R.D. (2009). A Taxonomy for Noise in Images of Paper Documents - The Physical Noises. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_83
Download citation
DOI: https://doi.org/10.1007/978-3-642-02611-9_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02610-2
Online ISBN: 978-3-642-02611-9
eBook Packages: Computer ScienceComputer Science (R0)