Skip to main content

Video Compression and Retrieval of Moving Object Location Applied to Surveillance

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

  • 2262 Accesses

Abstract

A major problem in surveillance systems is the storage requirements for video archival; videos are recorded continuously for long periods of time, resulting in large amounts of data. Therefore, it is essential to apply efficient compression techniques. Additionally, it is useful to be able to index the archived videos based on events. In general, such events are defined by the interaction among moving objects in the scene. Consequently, besides data compression, efficient ways of storing moving objects should be considered. We present a method that exploits both temporal and spatial redundancy of videos captured from static cameras to perform compression and subsequently allows fast retrieval of moving object locations directly from the compressed data. Experimental results show that the approach achieves high compression ratios compared to other existing video compression techniques without significant quality degradation and is fast due to the simplicity of the operations required for compression and decompression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ISO/IEC 11172-2 Information Technology: Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to 1.5 Mbits/s. Part 2 (1993)

    Google Scholar 

  2. ISO/IEC 13818-2 Information Technology: Generic Coding of Moving Pictures and Associated Audio Information. Part 2: Video (2000)

    Google Scholar 

  3. ISO/IEC 14496-2 Information Technology: Coding of Audio-Visual Objects. Part 2: Visual (2001)

    Google Scholar 

  4. ITU-T Recommendation H.261: Video Codec for Audiovisual Services at px64 kbit/s, Geneve (1990)

    Google Scholar 

  5. ITU-T Recommendation H.263: Video Coding for Low Bitrate Communication. Version 2, Geneve (1998)

    Google Scholar 

  6. Babu, R., Makur, A.: Object-based Surveillance Video Compression using Foreground Motion Compensation. In: 9th International Conference on Control, Automation, Robotics and Vision, pp. 1–6 (2006)

    Google Scholar 

  7. Hakeem, A., Shafique, K., Shah, M.: An Object-based Video Coding Framework for Video Sequences Obtained from Static Cameras. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 608–617. ACM, New York (2005)

    Chapter  Google Scholar 

  8. Nishi, T., Fujiyoshi, H.: Object-based Video Coding using Pixel State Analysis. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, pp. 306–309 (2004)

    Google Scholar 

  9. Perez-Iglesias, H., Dapena, A., Castedo, L.: A Novel Video Coding Scheme based on Principal Component Analysis. In: IEEE Workshop on Machine Learning for Signal Processing, pp. 361–366 (2005)

    Google Scholar 

  10. Jinzenji, K., Okada, S., Kobayashi, N., Watanabe, H.: MPEG-4 Very Low Bit-rate Video Compression by Adaptively Utilizing Sprite to Short Sequences. In: Proceedings. 2002 IEEE International Conference on Multimedia and Expo, ICME 2002, vol. 1, pp. 653–656 (2002)

    Google Scholar 

  11. Jolliffe, I.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  12. Liu, J., Wu, F., Yao, L., Zhuang, Y.: A Prediction Error Compression Method with Tensor-PCA in Video Coding. In: Sebe, N., Liu, Y., Zhuang, Y.-t., Huang, T.S. (eds.) MCAM 2007. LNCS, vol. 4577, pp. 493–500. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Torres, L., Prado, D.: A Proposal for High Compression of Faces in Video Sequences using Adaptive Eigenspaces. In: Proceedings of International Conference on Image Processing, vol. 1, pp. I–189–I–192 (2002)

    Google Scholar 

  14. Yao, L., Liu, J., Wu, J.: An Approach to the Compression of Residual Data with GPCA in Video Coding. In: Zhuang, Y.-t., Yang, S.-Q., Rui, Y., He, Q. (eds.) PCM 2006. LNCS, vol. 4261, pp. 252–261. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. Johns Hopkins Press, Baltimore (1996)

    MATH  Google Scholar 

  16. Roweis, S.: EM algorithms for PCA and SPCA. In: Advances in Neural Information Processing Systems, vol. 10, pp. 626–632. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Sharma, A., Paliwal, K.K.: Fast principal component analysis using fixed-point algorithm. Pattern Recognition Letters 28, 1151–1155 (2007)

    Article  Google Scholar 

  18. Wold, H.: Estimation of Principal Components and Related Models by Iterative Least Squares. In: Krishnaiah, P.R. (ed.) Multivariate Analysis. Academic Press, London (1966)

    Google Scholar 

  19. Martens, H., Naes, T.: Multivatiate Calibration. John Wiley, Chichester (1989)

    MATH  Google Scholar 

  20. MPlayer: The Movie Player (2009), http://www.mplayerhq.hu/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwartz, W.R., Pedrini, H., Davis, L.S. (2009). Video Compression and Retrieval of Moving Object Location Applied to Surveillance. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics