Abstract
We present a specialised (polynomial-based) rule for the propositional logic called the Independence Rule, which is useful to compute the conservative retractions of propositional logic theories. In this paper we show the soundness and completeness of the logical calculus based on this rule, as well as other applications. The rule is defined by means of a new kind of operator on propositional formulae. It is based on the boolean derivatives on the polynomial ring \({\mathbb F}_2[{\bf x}]\).
Partially supported by Minerva -Services in Mobility Platform- Project WeTeVe (2C/040) and Ayudas a grupos de investigación, Junta de Andalucí a (TIC 137).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alonso, J.-A., Borrego-Díaz, J., Hidalgo, M.-J., Martín-Mateos, F.-J., Ruiz-Reina, J.-L.: A Formally Verified Prover for the ALC Description Logic. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 135–150. Springer, Heidelberg (2007)
Amir, E., McIlraith, S.: Partition-based logical reasoning for first-order and propositional theories. Artificial Intelligence 162(1-2), 49–88 (2005)
Baader, F., Calvanese, D., McGuinnes, D.L., Nardi, P., Patel-Schneider, P.F.: The Description Logics Handbook. Theory, Implementations and Applications. Cambridge University Press, Cambridge (2003)
Bachmair, L., Ganzinger, H.: A theory of resolution. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 19–99. Elsevier Science Pub., Amsterdam (1998)
Beame, P., Impagliazzo, R., Krajícek, J., Pitassi, T., Pudlák, P.: Lower Bounds on Hilvert’s Nullstellensatz and propositional proofs. Proc. of London Mathematical Society 73, 1–26 (1996)
Bennett, B.: Relative Definability in Formal Ontologies. In: Proc 3rd Int. Conf. Formal Ontology in Information Systems (FOIS 2004), pp. 107–118. IOS Press, Amsterdam (2004)
Bochmann, D., Posthoff, C.: Binäre dynamishe systeme. Akademieverlag, Berlin (1981)
Borrego-Díaz, J., Chávez-González, A.M.: Extension of ontologies assisted by automated reasoning systems. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 247–253. Springer, Heidelberg (2005)
Borrego-Díaz, J., Chávez-González, A.M.: Controlling ontology extension by uncertain concepts through cognitive entropy. In: Proc. Workshop ISWC05 Uncertainty Reasoning on the Semantic Web URSW 2005, pp. 56–66 (2005), http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/
Buresh-Oppenheim, J., Clegg, M., Imppagliazzo, R., Pitassi, T.: Homogeneization and the Polynomial Calculus. Computational Complexity 11, 91–108 (2003)
Calvanese, D., De Giacomo, G., Lombo, D., Lenserini, M., Rosati, R.: Tractable Reasoning and Efficient Query Answering in Description Logics: The DL − Lite Family. J. Automated Reasoning 39, 385–429 (2007)
Chazarain, J., Alonso-Jiménez, J.A., Briales-Morales, E., Riscos-Fernández, A.: Multi-valued logic and Gröbner bases with applications to modal logic. Journal Symbolic Computation 11, 181–194 (1991)
Clegg, M., Edmonds, J., Impagliazzo, R.: Using Gröbner Basis algorithm to find proofs of unsatisfiability. In: Proc. ACM Symposium of Computing, pp. 174–183 (1996)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Heidelberg (2005)
Cuenca-Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic Partitioning of OWL Ontologies Using E-Connections. In: Proc. 2005 Int. Workshop on Description Logics (DL2005) (2005), http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-147/21-Grau.pdf
Giunchiglia, F., Yatskevitch, M., Shvaiko, P.: Semantic Matching: Algorithms and Implementations. J. Data Semantics 9, 1–38 (2007)
Fernández-Lebrón, M., Narváez-Macarro, L.: Hasse-Schmidt Derivations and Coefficient Fields in Positive Characteristics. J. of Algebra 265(1), 200–210 (2003)
Kapur, D., Narendran, P.: An equational approach to theorem proving in first-order predicate calculus. In: Proc. 9 Int. Joint Conf. on Artificial Intelligence (IJCAI 1985), pp. 1146–1153 (1985)
Laita, L.M., Roanes-Lozano, E., de Ledesma, L., Alonso-Jiménez, J.A.: A computer algebra approach to verification and deduction in many-valued knowledge systems. Soft Computing 3, 7–19 (1999)
Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic EL. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 84–99. Springer, Heidelberg (2007)
Martín-Mateos, F.J., Alonso, J.A., Hidalgo, M.J., Ruiz-Reina, J.L.: Formal Verification of a Generic Framework to Synthetize SAT-Provers. J Aut. Reasoning 32(4), 287–313 (2004)
Thayse, A.: Boolean Calculus of Differences. Springer, Berlin (1981)
Tsarkov, D., Horrocks, I.: Optimised Classification for Taxonomic Knowledge Bases. In: Proc. 2005 Int. Workshop on Description Logics (DL 2005) (2005), http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-147/39-TsarHorr.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aranda-Corral, G.A., Borrego-Díaz, J., Fernández-Lebrón, M.M. (2009). Conservative Retractions of Propositional Logic Theories by Means of Boolean Derivatives: Theoretical Foundations. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds) Intelligent Computer Mathematics. CICM 2009. Lecture Notes in Computer Science(), vol 5625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02614-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-02614-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02613-3
Online ISBN: 978-3-642-02614-0
eBook Packages: Computer ScienceComputer Science (R0)