Abstract
Two of the most recent and powerful multi-property preserving (MPP) hash domain extension transforms are the Ramdom-Oracle-XOR (ROX) transform and the Enveloped Shoup (ESh) transform. The former was proposed by Andreeva et al. at ASIACRYPT 2007 and the latter was proposed by Bellare and Ristenpart at ICALP 2007. In the existing literature, ten notions of security for hash functions have been considered in analysis of MPP capabilities of domain extension transforms, namely CR, Sec, aSec, eSec (TCR), Pre, aPre, ePre, MAC, PRF, PRO. Andreeva et al. showed that ROX is able to preserve seven properties; namely collision resistance (CR), three flavors of second preimage resistance (Sec, aSec, eSec) and three variants of preimage resistance (Pre, aPre, ePre). Bellare and Ristenpart showed that ESh is capable of preserving five important security notions; namely CR, message authentication code (MAC), pseudorandom function (PRF), pseudorandom oracle (PRO), and target collision resistance (TCR). Nonetheless, there is no further study on these two MPP hash domain extension transforms with regard to the other properties. The aim of this paper is to fill this gap. Firstly, we show that ROX does not preserve two other widely-used and important security notions, namely MAC and PRO. We also show a positive result about ROX, namely that it also preserves PRF. Secondly, we show that ESh does not preserve other four properties, namely Sec, aSec, Pre, and aPre. On the positive side we show that ESh can preserve ePre property. Our results in this paper provide a full picture of the MPP capabilities of both ROX and ESh transforms by completing the property-preservation analysis of these transforms in regard to all ten security notions of interest, namely CR, Sec, aSec, eSec (TCR), Pre, aPre, ePre, MAC, PRF, PRO.
The full version of this paper is available from [16].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving Iterated Hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer, Heidelberg (2007)
Andreeva, E., Preneel, B.: A Three-Property-Secure Hash Function. In: Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008. Workshop Records, pp. 208–224 (2008)
Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)
Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Transforms. Cryptology ePrint Archive, Report 2007/271 (2007), http://eprint.iacr.org/
Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006)
Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997)
Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)
Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)
Dodis, Y., Puniya, P.: Getting the Best Out of Existing Hash Functions; or What if We Are Stuck with SHA? In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 156–173. Springer, Heidelberg (2008)
Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hashing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer, Heidelberg (2006)
Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)
Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)
Mironov, I.: Collision-Resistant No More: Hash-and-Sign Paradigm Revisited. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 140–156. Springer, Heidelberg (2006)
Mironov, I.: Hash Functions: From Merkle-Damgård to Shoup. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 166–181. Springer, Heidelberg (2001)
Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applications. In: STOC 1989, pp. 33–43. ACM Press, New York (1989)
Reyhanitabar, M.R., Susilo, W., Mu, Y.: Analysis of Property-Preservation Capabilities of the ROX and ESh Hash Domain Extenders. Cryptology ePrint Archive, Report 2009/170 (2009)
Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)
Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg (2000)
Yasuda, K.: How to Fill Up Merkle-Damgård Hash Functions. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 272–289. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Reyhanitabar, M.R., Susilo, W., Mu, Y. (2009). Analysis of Property-Preservation Capabilities of the ROX and ESh Hash Domain Extenders. In: Boyd, C., González Nieto, J. (eds) Information Security and Privacy. ACISP 2009. Lecture Notes in Computer Science, vol 5594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02620-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-02620-1_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02619-5
Online ISBN: 978-3-642-02620-1
eBook Packages: Computer ScienceComputer Science (R0)