Abstract
We describe the constraint satisfaction problem and show that it unifies a very wide variety of computational problems. We discuss the techniques that have been used to analyse the complexity of different forms of constraint satisfaction problem, focusing on the algebraic approach, and highlight some of the recent results in this area.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1993)
Bodirsky, M.: Constraint satisfaction problems with infinite templates. In: Creignou, N., et al. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 196–228. Springer, Heidelberg (2008)
Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complexity. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 184–196. Springer, Heidelberg (2008)
Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation 16, 359–373 (2006)
Bodirsky, M., Nordh, G., von Oertzen, T.: Integer programming with 2-variable equations and 1-variable inequalities. Inf. Proc. Letters 109, 572–575 (2009)
Bodnarchuk, V., Kaluzhnin, L., Kotov, V., Romov, B.: Galois theory for Post algebras. I. Cybernetics and Systems Analysis 5, 243–252 (1969)
Bulatov, A.: H-coloring dichotomy revisited. Theoretical Computer Science 349(1), 31–39 (2005)
Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)
Bulatov, A., Valeriote, M.: Recent results on the algebraic approach to the CSP. In: Creignou, N., et al. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 68–92. Springer, Heidelberg (2008)
Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM 53(1), 66–120 (2006)
Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction problems. Journal of Computer and System Sciences 74, 721–743 (2007)
Cooper, M., Jeavons, P., Salamon, A.: Hybrid tractable CSPs which generalize tree structure. In: ECAI 2008, Proceedings of the 18th European Conference on Artificial Intelligence, Patras, Greece, July 21–25, 2008, pp. 530–534. IOS Press, Amsterdam (2008)
Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. Society for Industrial and Applied Mathematics, Philadelphia (2001)
Dalmau, V., Kolaitis, P., Vardi, M.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002)
Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38, 353–366 (1989)
Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28, 57–104 (1998)
Freuder, E.: A sufficient condition for backtrack-bounded search. Journal of the ACM 32, 755–761 (1985)
Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)
Geiger, D.: Closed systems of functions and predicates. Pacific Journal of Mathematics 27, 95–100 (1968)
Green, M., Jefferson, C.: Structural tractability of propagated constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 372–386. Springer, Heidelberg (2008)
Grohe, M.: The structure of tractable constraint satisfaction problems. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 58–72. Springer, Heidelberg (2006)
Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM 54, 1–24 (2007)
Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: SODA 2006: Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithm, pp. 289–298. ACM Press, New York (2006)
Gyssens, M., Jeavons, P., Cohen, D.: Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence 66(1), 57–89 (1994)
Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical Computer Science 200, 185–204 (1998)
Jeavons, P., Cohen, D.: An algebraic characterization of tractable constraints. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 633–642. Springer, Heidelberg (1995)
Jeavons, P., Cohen, D., Gyssens, M.: A test for tractability. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)
Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)
Jeavons, P., Cooper, M.: Tractable constraints on ordered domains. Artificial Intelligence 79(2), 327–339 (1995)
Jefferson, C., Jeavons, P., Green, M., van Dongen, M.: Representing and solving finite-domain constraint problems using systems of polynomials. Technical Report RR-07-08, Oxford University Computing Laboratory (2007)
Jonsson, P., Krokhin, A.: Recognizing frozen variables in constraint satisfaction problems. Theoretical Computer Science 329(1-3), 93–113 (2004)
Larose, B., Zádori, L.: Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. International Journal of Algebra and Computation 16, 563–582 (2006)
Lenstra, H.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 538–548 (1983)
Matijasevič, J., Robinson, J.: Reduction of an arbitrary Diophantine equation to one in 13 unknowns. Acta Arithmeticae 27, 521–553 (1975)
Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences 7, 95–132 (1974)
Pearson, J., Jeavons, P.: A survey of tractable constraint satisfaction problems. Technical Report CSD-TR-97-15, Royal Holloway, University of London (July 1997)
Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Programming. Elsevier, Amsterdam (2006)
Salamon, A., Jeavons, P.: Perfect constraints are tractable. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 524–528. Springer, Heidelberg (2008)
Schaefer, T.: The complexity of satisfiability problems. In: Proceedings 10th ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)
Simonis, H.: Sudoku as a constraint problem. In: CP Workshop on Modeling and Reformulating Constraint Satisfaction Problems, pp. 13–27 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jeavons, P. (2009). Presenting Constraints. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-02716-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02715-4
Online ISBN: 978-3-642-02716-1
eBook Packages: Computer ScienceComputer Science (R0)