Skip to main content

Modular Sequent Systems for Modal Logic

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5607))

Abstract

We see cut-free sequent systems for the basic normal modal logics formed by any combination the axioms d, t, b, 4, 5. These systems are modular in the sense that each axiom has a corresponding rule and each combination of these rules is complete for the corresponding frame conditions. The systems are based on nested sequents, a natural generalisation of hypersequents. Nested sequents stay inside the modal language, as opposed to both the display calculus and labelled sequents. The completeness proof is via syntactic cut elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic: from foundations to applications. Proc. Logic Colloquium, Keele, UK, 1993, pp. 1–32. Oxford University Press, New York (1996)

    Google Scholar 

  2. Belnap Jr., N.D.: Display logic. Journal of Philosophical Logic 11, 375–417 (1982)

    MATH  MathSciNet  Google Scholar 

  3. Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications (2006)

    Google Scholar 

  4. Brünnler, K.: Deep sequent systems for modal logic. In: Archive for Mathematical Logic (to appear, 2008) http://www.iam.unibe.ch/~kai/Papers/dsm.pdf

  5. Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS, vol. 2250, pp. 347–361. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Bull, R.A.: Cut elimination for propositional dynamic logic without *. Mathematische Logik und Grundlagen der Mathematik 38, 85–100 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castilho, M.A., del Cerro, L.F., Gasquet, O., Herzig, A.: Modal tableaux with propagation rules and structural rules. Fundam. Inf. 32(3-4), 281–297 (1997)

    MATH  Google Scholar 

  8. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: Proceedings of LICS 2008, pp. 229–240 (2008)

    Google Scholar 

  9. Goré, R., Tiu, A.: Classical modal display logic in the calculus of structures and minimal cut-free deep inference calculi for S5. Journal of Logic and Computation 17(4), 767–794 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hein, R., Stewart, C.: Purity through unravelling. In: Bruscoli, P., Lamarche, F., Stewart, C. (eds.) Structures and Deduction, pp. 126–143. Technische Universität Dresden (2005)

    Google Scholar 

  11. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–135 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34(5-6), 507–544 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Poggiolesi, F.: The tree-hypersequent method for modal propositional logic. In: Malinowski, J., Makinson, D., Wansing, H. (eds.) Towards Mathematical Philosophy. Trends in Logic, pp. 9–30. Springer, Heidelberg (2009)

    Google Scholar 

  14. Stewart, C., Stouppa, P.: A systematic proof theory for several modal logics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, pp. 309–333. King’s College Publications (2005)

    Google Scholar 

  15. Stouppa, P.: A deep inference system for the modal logic S5. Studia Logica 85(2), 199–214 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wansing, H.: Displaying Modal Logic. Trends in Logic Series, vol. 3. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brünnler, K., Straßburger, L. (2009). Modular Sequent Systems for Modal Logic. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02716-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02715-4

  • Online ISBN: 978-3-642-02716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics