
Logical Methods in Computer Science
Vol. 7 (1:4) 2011, pp. 1–28
www.lmcs-online.org

Submitted Jun. 24, 2010
Published Mar. 17, 2011

GENERIC MODAL CUT ELIMINATION APPLIED TO CONDITIONAL

LOGICS

DIRK PATTINSON a AND LUTZ SCHRÖDER b
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Abstract. We develop a general criterion for cut elimination in sequent calculi for propo-
sitional modal logics, which rests on absorption of cut, contraction, weakening and inver-
sion by the purely modal part of the rule system. Our criterion applies also to a wide
variety of logics outside the realm of normal modal logic. We give extensive example
instantiations of our framework to various conditional logics. For these, we obtain fully
internalised calculi which are substantially simpler than those known in the literature,
along with leaner proofs of cut elimination and complexity. In one case, conditional logic
with modus ponens and conditional excluded middle, cut elimination and complexity were
explicitly stated as open in the literature.

1. Introduction

Cut elimination, originally conceived by Gentzen [7], is one of the core concepts of
proof theory and plays a major role in particular for algorithmic aspects of logic, including
the complexity of automated reasoning and, via interpolation, modularity issues. The large
number of logical calculi that are currently in use, in particular in various areas of computer
science, motivates efforts to define families of sequent calculi that cover a variety of logics and
admit uniform proofs of cut elimination, enabled by suitable sufficient conditions. Here, we
present such a method for modal sequent calculi that applies to possibly non-normal normal
modal logics, which appear, e.g. in concurrency and knowledge representation. We use a
separation of the modal calculi into a fixed underlying propositional part and a modal part.
The core of our criterion, that we call the absorption of cut, stipulates that an application of
the cut rule to conclusions of modal rules can be replaced by a single rule application. This
concept generalises the notion of resolution closed rule set [14, 18], dropping the assumption
that the logic at hand is rank-1, i.e. axiomatised by formulas in which the nesting depth of
modal operators is uniformly equal to 1 (such as K).
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Our method is reasonably simple and intuitive, and nevertheless applies to a wide range
of modal logics. While we use normal modal logics such as K and T as running examples
to illustrate our concepts at the time of introduction, our main applications are conditional
logics, which have a binary modal operator ⇒ read as a non-monotonic implication (unlike
default logics, conditional logics allow nested non-monotonic implications). In particular, we
prove cut-elimination (hence, since the generic systems under consideration are analytic, the
subformula property) for the conditional logic CK and all its extensions by any of the axioms
conditional modus ponens (MP) (A ⇒ B) → A → B, where→ denotes material implication,
conditional excluded middle (CEM) (A ⇒ B)∨(A ⇒ ¬B), and conditional identity (ID) A ⇒
A using our generic procedure. An easy analysis of proof search in the arising cut-free calculi
moreover establishes that the satisfiability problem of each of these logics is in PSPACE.
This is a tight bound for logics not containing CEM, whereas the provability problem in
CKCEM and CKIDCEM can be solved in coNP, as we show by a slightly adapted algorithmic
treatment of our calculus using a dynamic programming approach in the spirit of [20]. We
point out that while (different) cut-free labelled sequent calculi for CK, CKMP, CKCEM,
and some further conditional logics, as well as the ensuing upper complexity bounds, have
previously been presented by Olivetti et al., the corresponding issues for CKMPCEM have
explicitly been left as open problems [13]; moreover, our coNP upper bounds for CKCEM

and CKIDCEM improve previous upper PSPACE bounds.

Related work. A set of sufficient conditions for a sequent calculus to admit cut elimination
and a subsequent analysis of the complexity of cut elimination (not of proof search) is
presented in [16]. The range of application of this method is very wide and encompasses,
e.g. first-order logic, the modal logic S4, linear logic, and intuitionistic propositional logic.
This generality is reflected in the fact that the method as a whole is substantially more
involved than ours. A simpler method for a different and comparatively restrictive class of
calculi, so-called canonical calculi, is considered in [1]; this method does not apply to typical
modal systems, as it considers only so-called canonical rules, i.e., left and right introduction
rules for connectives which permit adding a common context simultaneously in the premise
and the conclusion. (In fact, it might be regarded as the essence of modal logic that its rules
fail to be canonical, e.g. the necessitation rule A/�A does not generalise to Γ, A/Γ,�A for a
sequent Γ.) Moreover, the format of the rules in op.cit. does not allow for the introduction
of more than one occurrence of a logical connective, which is necessary even for the most
basic modal logics. The same applies to [5]. In [4], logical rules are treated on an individual
basis, which precludes the treatment of cuts between two rule conclusions. Overall, our
notion of absorption is substantially more general when compared to similar notions in
the papers discussed above, which stipulate that cuts between left and right rules for the
same connective are absorbed by structural rules. In our own earlier work [14], we have
considered a special case of the method presented here in the restricted context of rank-1
logics; in particular, these results did not cover logics such as K4, CKMP, or CKMPCEM.

This work is an extended and revised version of [15].

2. Preliminaries and Notation

A modal similarity type (or modal signature) is a set Λ of modal operators with as-
sociated arities that we keep fixed throughout the paper. Given a set V of propositional
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(N)
A

�A
(D)�(A → B) → (�A → �B) (4)�A → ��A (R)�A → A

Figure 1: Axioms and Rules of modal Hilbert Systems

variables, the set F(Λ) of Λ-formulas is given by the grammar

F(Λ) ∋ A,B ::= ⊥ | p | ¬A | A ∧B | ♥(A1, . . . , An)

where p ∈ V and ♥ ∈ Λ is n-ary. We use standard abbreviations of the other propositional
connectives ⊤, ∨ and →. A Λ-sequent is a finite multiset of Λ-formulas, and the set of Λ-
sequents is denoted by S(Λ). We write the multiset union of Γ and ∆ as Γ,∆ and identify
a formula A ∈ F(Λ) with the singleton sequent containing only A. If S ⊆ F(Λ) is a set of
formulas, then an S-substitution is a mapping σ : V → S. We denote the result of uniformly
substituting σ(p) for p in a formula A by Aσ. This extends pointwise to Λ-sequents so that
Γσ = A1σ, . . . , Anσ if Γ = A1, . . . , An. If S ⊆ F(Λ) is a set of Λ-formulas and A ∈ F(Λ),
we say that A is a propositional consequence of S if there exist A1, . . . , An ∈ S such that
A1∧· · ·∧An → A is a substitution instance of a propositional tautology. We write S ⊢PL A
if A is a propositional consequence of S and A ⊢PL B for {A} ⊢PL B for the case of single
formulas.

3. Modal Deduction Systems

To facilitate the task of comparing the notion of provability in both Hilbert and Gentzen
type proof systems, we introduce the following notion of a proof rule that can be used,
without any modifications, in both systems.

Definition 3.1. A Λ-rule is of the form Γ1...Γn

Γ0
where n ≥ 0 and Γ0, . . . ,Γn are Λ-sequents.

The sequents Γ1, . . . ,Γn are the premises of the rule and Γ0 its conclusion. A rule
Γ0

without
premises is called a Λ-axiom, which we denote by just its conclusion, Γ0. A rule set is just
a set of Λ-rules, and we say that a rule set R is substitution closed, if Γ1σ . . .Γnσ/Γ0σ ∈ R

whenever Γ1 . . .Γn/Γ0 ∈ R and σ : V → F(Λ) is a substitution.

In view of the sequent calculi that we introduce later, we read sequents disjunctively. Con-
sequently, a rule Γ1 . . . ,Γn/Γ0 can be used to prove the disjunction of Γ0, provided that∨

Γi is provable, for all 1 ≤ i ≤ n. We emphasise that a rule is an expression of the object
language, i.e. it does not contain meta-linguistic variables. As such, it represents a specific
deduction step rather than a family of possible deductions, which helps to economise on
syntactic categories. In our examples, concrete rule sets are presented as instances of rule
schemas.

Example 3.2. For the modal logics K, K4 and T , we fix the modal signature Λ = {�}
consisting of a single modal operator � with arity one. The language of conditional logic is
given by the similarity type Λ = {⇒} where the conditional arrow ⇒ has arity 2. We use
infix notation and write A ⇒ B instead of ⇒ (A,B) for A,B ∈ F(Λ). Formulas A ⇒ B are
interpreted as various forms of conditionals, e.g. default implication ‘if A then normally B’,
relevant implication and others, depending on the choice of semantics and imposed logical
principles. Deduction over modal and conditional logics are governed by the following rule
sets:
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(RCEA)
A ↔ A′

(A ⇒ B) ↔ (A′ ⇒ B)
(RCK)

B1 ∧ · · · ∧Bn → B

(A ⇒ B1) ∧ · · · ∧ (A ⇒ Bn) → (A ⇒ B)

(ID)A ⇒ A (MP)(A ⇒ B) → (A → B) (CEM)(A ⇒ B) ∨ (A ⇒ ¬B)

Figure 2: Axioms and Rules of conditional Hilbert Systems

(1) The rule set K associated to the modal logic K consists of all instances of the necessita-
tion rule (N) and the distribution axiom (D) in Figure 1. The rule sets that axiomatise
the logics T and K4 arise by extending this set with the reflexivity axiom (R) and the
(4)-axiom, respectively. We reserve the name (T) for the reflexivity rule in a cut-free
system.

(2) The basic conditional logic is the system CK of [3], axiomatised by the rule set that
consists of all instances of (RCEA) and (RCK) in Figure 2. The system CK constitutes
a minimal set of properties to be reasonably expected of any conditional, however non-
standard: replacement of equivalents in the left hand argument, and compatibility with
conjunction in the right-hand argument. Additional properties are typically imposed
when more specific interpretations of ⇒ are intended. E.g. the basic properties of ⇒
viewed as a default implication are given by Burgess’ System S [2], which is related
to the well-known KLM postulates of default reasoning [11]. A treatment of System S
using methods of the present work and [14] is presented in [19]. Here, we consider
several other standard axioms, namely identity (ID), conditional modus ponens (MP)
and conditional excluded middle (CEM), also given in Figure 2. We denote the corre-
sponding extensions of CK by juxtaposition of the respective axioms, e.g. CKMPCEM

contains the rules for CK and the axioms (MP) and (CEM). As indicated above, whether
or not these axioms are accepted depends on the intended reading of the conditional.
E.g., modus ponens is a reasonable principle for interpretations of the conditional as a
relevant implication or as a counterfactual, but not for default implication; conditional
excluded middle is a controversially discussed property of the subjunctive conditional
[6]. The identity axiom, while accepted for many interpretations of the conditional
including as default implication, is typically rejected for causal interpretations [8].

Rules with more than one premise arise through saturation of a given rule set under cut
that, e.g. leads to the rules (CKg) and (MPg) presented in Section 6.

In order to make the mapping between Hilbert-style and Gentzen-style systems easier, we
take the derivability predicate of a Hilbert-system to be induced by a set of Λ-rules and read
each sequent as the disjunction of its elements. The notion of deduction in modal Hilbert
systems then takes the following form.

Definition 3.3. Suppose R is a set of rules. The set of R-derivable formulas in the Hilbert-
system given by R is the least set of formulas that

• contains Aσ whenever A is a propositional tautology and σ is a substitution
• contains B whenever it contains A and A → B
• contains

∨
Γ0 whenever it contains

∨
Γ1, . . . ,

∨
Γn and Γ1...Γn

Γ0
∈ R.

We write HR ⊢ A if A is R-derivable.
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In other words, the set of derivable formulas is the least set that contains propositional
tautologies, is closed under uniform substitution, modus ponens and application of rules.
We will later consider Hilbert systems that induce the same provability predicate based on
the following notion of admissibility.

Definition 3.4. A rule set R′ is admissible in HR if HR ⊢ A ⇐⇒ H(R ∪ R′) ⊢ A for all
formulas A ∈ F(Λ). Two rule sets R,R′ are equivalent if R is admissible in HR′ and R′ is
admissible in HR.

In words, R′ is admissible in HR if adding the rules R′ to those of R leaves the set of provable
formulas unchanged. We note the following trivial, but useful consequence of admissibility.

Lemma 3.5. Let R and R′ be equivalent, and let A ∈ F(Λ). Then HR ⊢ A iff HR′ ⊢ A.

The next proposition establishes a rudimentary form of proof normalisation in Hilbert
systems and is the key for proving equivalence of Hilbert and Gentzen-type systems. We
show that every derivable formula in a Hilbert-sytem is a propositional consequence of
conclusions of rules with provable premises, which stratifies proofs into rule application and
propositional reasoning and avoids modus ponens.

Proposition 3.6. Suppose that S is the least set of formulas that is closed under proposi-
tional consequences of rule conclusions, that is, S contains A ∈ F(Λ) whenever there are
rules Θ1/Γ1, . . . ,Θn/Γn ∈ R and substitutions σ1, . . . , σn : V → F(Λ) such that

∨
∆σi ∈ S

for all ∆ ∈ Θi (i = 1, . . . , n), and {
∨

Γ1σ, . . . ,
∨

Γnσ} ⊢PL A.
Then S coincides with the set of derivable formulas in the Hilbert-calculus induced by

R, that is S = {A ∈ F(Λ) | HR ⊢ A}.

Proof. We write HT(R) = {A ∈ F(Λ) | HR ⊢ A} for the set of provable formulas in HR. The
inclusion S ⊆ HT(R) is immediate as HT(R) contains propositional tautologies, is closed
under uniform substitution and modus ponens. For the reverse inclusion we show that S is
closed under R-derivability as considered in Definition 3.3.

This is clear for all cases (propositional tautologies, uniform substitutions, rule appli-
cation) except possibly modus ponens. So assume that HR ⊢ A → B and HR ⊢ A. By
induction hypothesis, there are

• Rules Θ1/Γ1, . . . ,Θn/Γn and substitutions σ1, . . . , σn such that {
∨

Γ1σ1, . . . ,
∨

Γnσn} ⊢PL

A → B
• Rules Σ1/∆1, . . . ,Σk/∆k and substitutions τ1, . . . , τk such that {

∨
∆1τ1, . . . ,

∨
∆kτk} ⊢PL

A

and moreover
∨

Ξσ ∈ S whenever Ξ ∈ Θ1, . . . ,Θn,Σ1, . . . ,Σk. The claim follows, as
{Γ1σ1, . . . ,Γnσn,∆1τ1, . . . ,∆kτk} ⊢PL B.

In other words, in a modal Hilbert system, each provable formula is a propositional con-
sequence of rule conclusions with provable premises. This result forms the basis of our
comparison of Hilbert and Gentzen systems. The point to note is that in a Hilbert sys-
tem, provable formulas are propositional consequences of zero or more rule conclusions with
provable premises. The propositional reasoning that is applied when showing that the set
of conclusions implies a formula generally uses the cut-rule. As a consequence, the need for
cut vanishes if there is no need to apply propositional reasoning to combine conclusions.
This is what our notion of cut-absorption (introduced later in Definition 4.5) formalises:
we show that cut elimination essentially amounts to the fact that – in the corresponding
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Hilbert system – each valid formula is a consequence of a at most one rule conclusion with
provable premise.

We now set the stage for sequent systems that we are going to address in the remainder
of the paper. As we are dealing with extensions of classical propositional logic, it suffices
to work with a right-handed calculus. Our calculus is equipped with explicit negation,
and therefore precisely dual to modal tableau calculi [9] that serve as the usual basis for
syntactically determining the complexity of the satisfiability problem.

The notion of derivability in the sequent calculus associated with a rule set R is formu-
lated parametric in terms of a set X of additional rules that will later be instantiated with
relativised versions of cut, weakening, contraction and inversion.

Definition 3.7. Suppose R and X are sets of Λ-rules. The set of GR+X-derivable sequents
in the Gentzen-system given by R is the least set of sequents that

• contains A,¬A,Γ for all sequents Γ ∈ S(Λ) and formulas A ∈ F(Λ)
• contains ¬⊥,Γ for all Γ ∈ S(Λ)
• is closed under instances of the rule schemas

(¬∧)
Γ,¬A,¬B

Γ,¬(A ∧B)
(∧)

Γ, A Γ, B

Γ, A ∧B
(¬)

Γ, A

Γ,¬¬A

where A ∈ F(Λ) ranges over formulas and Γ ⊆ F(Λ) over multisets of formulas. We call
the above rules the propositional rules and the formula occurring in the conclusion but
not in Γ principal in the respective rule.

• is closed under the rules in R ∪ X, i.e. it contains Γ0 whenever it contains Γ1, . . . ,Γn and
Γ1...Γn

Γ0
∈ R ∪ X.

We write GR+ X ⊢ Γ if Γ can be derived in this way and GR ⊢ Γ if X = ∅. As for Hilbert-
style calculi (Definition 3.4), we call a rule set R′ admissible in GR in case GR ⊢ Γ ⇐⇒
G(R ∪ R′) ⊢ Γ for all Γ ∈ S(Λ).

The set X of extra rules will later be instantiated with a relativised version of the cut rule and
additional axioms that locally capture the effect of weakening, contraction and inversion,
applied to rule premises. This allows to formulate local conditions for the admissibility of
cut that can be checked on a per-rule basis.

Many other formulations of sequent systems only permit axioms of the form Γ, p,¬p
where p ∈ V is a propositional atom. The reason for being more liberal here is that this
makes it easier to prove admissibility of uniform substitution, at the expense of losing depth-
preserving admissibility of structural rules. We come back to this matter in Remark 4.4.
The following proposition is readily established by an induction on the provability predicate
HR ⊢.

Proposition 3.8. Suppose Γ ∈ S(Λ) is a sequent. Then HR ⊢
∨

Γ if GR ⊢ Γ.

The remainder of the paper is concerned with the converse of the above proposition, which
relies on specific properties of the rule set R.

4. Generic Modal Cut Elimination

In order to establish the converse of Proposition 3.8 we need to establish that the
cut rule is admissible in the Gentzen system GR defined by the ruleset R. Clearly, we
cannot expect that cut elimination holds in general: it is well known (and easy to check)
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that the sequent system arising from the rule set consisting of all instances of (N) and (D),
presented in Example 3.2 does not enjoy cut elimination. In other words, we have to look for
constructions that allow us to transform a given rule set into one for which cut elimination
holds. The main result of our analysis is that cut elimination holds if the rule set under
consideration satisfies four crucial requirements that are local in the sense that they can be
checked on a per-rule basis without the need of carrying out a fully-fledged cut-elimination
proof: absorption of weakening, contraction, inversion and cut.

The first three properties can be checked for each rule individually and amount to the
admissibility of the respective principle, and the last requirement amounts to the possibility
of eliminating cut between a pair of rule conclusions. We emphasise that these properties
can be checked locally for the modal rules, and cut elimination will follow automatically. It
is not particularly surprising that cut elimination holds under these assumptions. However,
isolating the four conditions above provides us with means to convert a modal Hilbert
system into an equivalent cut-free sequent calculus. We now introduce relativised versions
of the structural rules that will be the main tool in the proof of cut elimination. This can
be seen as permutability of structural rules: every derivation of Γ from premises Γ1, . . . ,Γn

that ends in weakening, inversion or contraction is applied can be replaced by a derivation
of Γ where weakening, inversion and contraction is only applied to the premises Γ1, . . . ,Γn.

Definition 4.1. Suppose Γ is a Λ-sequent and let A(Γ) consist of the axioms

• Γ, A for all A ∈ F(Λ)
• ∆, A if Γ = ∆, A,A for some ∆ ∈ S(Λ), A ∈ F(Λ)
• ∆, A if Γ = ∆,¬¬A for some ∆ ∈ S(Λ), A ∈ F(Λ)
• ∆,¬A1,¬A2 if Γ = ∆,¬(A1 ∧A2) for some ∆ ∈ S(Λ), A1, A2 ∈ F(Λ)
• ∆, Ai for i = 1, 2 if Γ = ∆, (A1 ∧A2) for some ∆ ∈ S(Λ), A1, A2 ∈ F(Λ)

We say that a rule set R absorbs the structural rules if

GR+ A(Γ1) ∪ · · · ∪ A(Γn) ⊢ Γ

for all Γ1...Γn

Γ0
∈ R and all Γ ∈ A(Γ0).

In other words, a deduction step that applies weakening, contraction or inversion to a rule
conclusion can be replaced by a (possibly different) rule where the corresponding structural
rules are applied to the premises. We discuss a number of standard examples before stating
that absorption of the structural rules implies their admissibility.

Example 4.2. The rule sets containing all instances of either of the following rule schemas
(K), (T), and (K4), respectively,

(K)
¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0,Γ
(T)

¬A,¬�A,Γ

¬�A,Γ
(K4)

¬A1,¬�A1, . . . ,¬An,¬�An, B

¬�A1, . . . ,¬�An,�B,Γ

absorb the structural rules. We note that (K) absorbs weakening due to the presence of Γ
in the conclusion, and the absorption of contraction in (T) and (K4) is a consequence of
the presence of the negated �-formulas in the premise. The absorption of inversion in a
consequence of the weakening context Γ in (K) and (K4) and implied by duplicating the
context Γ in (T). On the other hand, the rule sets defined by

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0

¬A,Γ

¬�A,Γ

fail to absorb the structural rules: the rule on the left fails to absorb weakening, whereas
the right-hand rule does not absorb contraction.
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It should be intuitively clear that absorption of structural rules implies their admissibility,
which we establish next.

Proposition 4.3. Suppose R absorbs the structural rules. Then all instances of the rule
schemas of weakening, contraction and inversion

Γ

Γ, A

Γ, A,A

Γ, A

Γ,¬¬A

Γ, A

Γ,¬(A1 ∧A2)

Γ,¬A1,¬A2

Γ, A1 ∧A2

Γ, Ai
(i = 1, 2)

where Γ ∈ S(Λ) and A,A1, A2 ∈ F(Λ) are admissible in GR.

Proof. Standard induction on proofs in GR where the case of propositional rules is standard
and the inductive case for modal rules immediately follows from absorption.

Remark 4.4.

(1) The main purpose for introducing the notion of absorption of structural rules (Definition
4.1) is to have a handy criterion that guarantees admissibility of the structural rules
(Proposition 4.3). Our definition offers a compromise between generality and simplicity.
In essence, a rule set absorbs structural rules if an application of weakening, contraction
or inversion can be pushed up one level of the proof tree. A weaker version of Definition
4.1 would require that an application of weakening, contraction or inversion to a rule
conclusion can be replaced by a sequence of deduction steps where the structural rule
in question can not only be applied to the premises of the rule, but also freely anywhere
else, provided that these additional applications are smaller in a well-founded ordering.
However, we are presently not aware of any examples where this extra generality would
be necessary.

(2) In many sequent systems, the statement of Proposition 4.3 can be strengthened to say
that weakening, contraction and inversion are depth-preserving admissible, i.e. does not
increase the height of the proof tree. This is in general false for the systems considered
here as axioms are of the form A,¬A,Γ for A ∈ F(Λ) and, for instance, (A∧B),¬(A∧B)
is derivable with a proof of height one (being an axiom), but, e.g. A ∧ B,¬A,¬B
cannot be established by a proof of depth one (not being an axiom). It is easy to
see that weakening, inversion and contraction are in fact depth-preserving admissible if
only atomic axioms of the form p,¬p,Γ are allowed, for p ∈ V a propositional variable.
The more general form of axioms adopted in this paper allows us to simplify many
constructions as we do not have to consider a congruence rule explicitly which would
allow us to prove (rather than to assume as axioms) sequents of the form �A,¬�A,Γ.

Having dealt with the structural rules, we now address our main concern: the admissibility
of the cut rule. In contrast to the absorption of structural rules, we need one additional
degree of freedom in that we need to allow ourselves to apply cut to a structurally smaller
formula.

Definition 4.5. The size of a formula A ∈ F(Λ) is given inductively by size(p) = size(⊥) =
1, size(A ∧ B) = 1 + size(A) + size(B), size(¬A) = 1 + size(A) and, for the modal case,
size(♥(A1, . . . , An)) = 1 + size(A1) + · · ·+ size(An).

A ruleset R absorbs cut, if for all rules (r1)
Γ1...Γn

A,Γ0
, (r2)

∆1...∆k

¬A,∆0
∈ R

GR+ Cut(A, r1, r2) ⊢ Γ0,∆0
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where Cut(A, r1, r2) consists of all instances of the rule schemas

Γ, C ∆,¬C

Γ,∆

Γ

Γ, A

Γ, A,A

Γ, A

Γ,¬¬A

Γ, A

Γ,¬(A1 ∧A2)

Γ,¬A1,¬A2

Γ, A1 ∧A2

Γ, Ai

where size(C) < size(A) in the leftmost rule and i = 1, 2 in the rightmost schema, together
with the axioms Γ1, . . . ,Γn,∆1, . . . ,∆k and all sequents of the form Γ,∆ where Γ,∆ ∈ S(Λ)
and, for some B ∈ F(Λ),

• Γ, B and ∆,¬B ∈ {Γ1, . . . ,Γn,∆1, . . . ,∆k}, or
• Γ, B = Γ0, A and ∆,¬B ∈ {∆1, . . . ,∆k}, or
• Γ, B = ∆0,¬A and ∆,¬B ∈ {Γ1, . . . ,Γn}.

A rule set that absorbs structural rules and the cut rule is called absorbing.

The intuition behind the above definition is similar to that of absorption of structural rules,
but we have two additional degrees of freedom: we can not only apply the cut rule to rule
premises, but we can moreover freely use both cut on structurally smaller formulas and the
structural rules. This allows us to use the standard argument, a double induction on the
structure of the cut formula and the size of the proof tree, to establish cut elimination. This
is carried out in the proof of the next theorem.

Theorem 4.6. Suppose R is absorbing. Then the cut rule

Γ, A ∆,¬A

Γ,∆

is admissible in GR.

Proof. We use Gentzen’s classical method and proceed by a double induction on the size of
the cut formula and the size of the proof tree. That is, we prove the statement

∀A ∈ F(Λ)∀n ∈ ω(n = n1 + n2 & ⊢n1
Γ, A & ⊢n2

∆,¬A =⇒ ⊢ Γ,∆)

by induction on size(A) where, in the inductive step, we use a side induction on the size of
proof trees, as indicated by the subscript of the entailment sign. Formally, the relation ⊢n

is defined inductively by ⊢1 Γ, A,¬A and

⊢n A

⊢n+1 ¬¬A

⊢n Γ,¬A,¬B

⊢n+1 Γ,¬(A ∧B)

⊢n Γ, A ⊢k Γ, B

⊢n+k+1 Γ, A ∧B

⊢n1
F1 . . . ⊢nk

Fk

⊢n1+···+nk+1 F0

where, in the last rule, F1...Fk

F0
∈ R. We may inductively assume that the statement holds for

all cut formulas C < A and to prove the statement for A we have to consider the following
cases:

(1) cuts that arise between two rule conclusions
(2) cuts that arise between a rule conclusion and the conclusion of a propositional rule or

axiom
(3) cuts that arise between two propositional rules.

We start with item (1), which follows directly from the fact that R absorbs cut. In more

detail, suppose that F1...Fk

F0,A
and G1...Gk

G0,¬A
∈ R and ⊢ni

Fi (i = 1, . . . , k) and ⊢mj
Gj for

j = 1, . . . , l. As R absorbs cut, we have that F0, G0 is derivable using cuts on formulas
< A from the additional assumptions Γ,∆ provided that for some D ∈ F(Λ) we have that
both Γ,D and ∆,¬D are among the F1, . . . , Fk, G1, . . . , Gl. In case Γ,D = ∆,¬D we have
that Γ ⊆ Γ,∆ and ⊢ Γ,∆ as weakening is admissible in GR. Assuming that ⊢x Γ,D and
⊢y ∆,¬D for Γ,D 6= ∆,¬D we have that x+ y < 2 +

∑
i ni +

∑
j mj and hence ⊢ Γ,∆ by
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(inner) induction hypothesis. The fact that – in the deduction of F0, G0 – we may also have
to use cuts on formulas < A is discharged by the outer induction hypothesis and possible
uses of weakening, contraction and inversion are admissible by Proposition 4.3.

As regards item (2) we only discuss a subset of the cases that showcase the need for
contraction, weakening and inversion to be admissible. For the whole discussion, suppose
that F1...Fk

F0
∈ R and ⊢ni

Fi for i = 1, . . . , k.

• Suppose that F0 = F ′

0, A and G0,¬A is an axiom. In case A ∈ G0 we have that F0 =
F ′

0, A ⊆ F ′

0, G0 and ⊢ F ′

0, G0 follows from ⊢ F ′

0, A as GR admits weakening. In case
¬A /∈ G0 we have that G0 is an axiom, and hence so is G0, F

′

0.
• Suppose that F0 = F ′

0, A and ¬A,G0 has been derived using (¬∧). We have to discuss
two cases, depending on whether or not ¬A is principal in the application of (¬∧).
Case A = A′ ∧ B′ and ⊢m ¬A′,¬B′, G0 so that ⊢m+1 ¬A,G0. As R absorbs structural
rules, we have that GR ⊢ F ′

0, A and GR ⊢ F ′

0, B. As cuts on A′ and B′ can be eliminated
by induction hypothesis, we have GR ⊢ F ′

0, F
′

0, G0 and therefore GR ⊢ F ′

0, G0 as GR admits
contraction.
Case ⊢m ¬C,¬D,¬A,G0 so that ⊢m+1 ¬(C ∧D),¬A,G0. As m+1+

∑k
i=1 ni < m+1+

1 +
∑k

i=1 ni we may apply the inner induction hypothesis to conclude ⊢ ¬C,¬D,G0, F
′

0

and applying (¬∧) gives ⊢ F ′

0,¬(C ∧D), G0.

All the other cases follow exactly the same pattern. We now focus on item (3), that is, we
show how cuts between the conclusions of propositional rules and axioms can be eliminated.
This is mostly standard and again we only discuss a subset of the cases. Suppose that
⊢n F0, A and ⊢m G0,¬A.

• If both F0, A and G0,¬A are axioms, then so is F0, G0.
• Suppose that F0, A has been derived using (∧) and G0,¬A has been derived using (¬∧).
We distinguish four cases depending on whether or not A is principal in the application
of (∧) or (¬∧).
Case A = A′ ∧ B′ and ⊢n0

F0, A, ⊢n1
F0, B

′ so that n = n0 + n1 + 1 and ⊢n A ∧ B,F0.
If A is principal in the application of (¬∧), we have that ⊢m−1 G0,¬A

′,¬B′. By (outer)
induction hypothesis, cuts on A′ and B′ can be eliminated so that we have ⊢ F0, F0, G0

and it follows from closure under contraction that ⊢ F0, G0.
IfA is not principal in the application of (¬∧) we have that ⊢m−1 ¬C,¬D,¬(A′∧B′), G′

0

so that G0 = ¬(C ∧D), G′

0 and ⊢m ¬(A∧B), G′

0. As ⊢n F0, A and ⊢m−1 ¬C,¬D,¬A,G′

0

and n+(m−1) < n+m we can apply the inner induction hypothesis to eliminate the cut
on A so that ⊢ F0,¬C,¬D,G′

0 and applying (¬∧) gives ⊢ F0,¬(C ∧D), G′

0 = F0, G0 as
required. The two cases where A is not principal in the application of (¬∧) follow exactly
the same pattern.

The remaining cases of cuts between propositional rules and axioms are entirely analogous,
and therefore omitted.

We illustrate the preceding theorem by using it to derive the well-known fact that cut-
elimination holds for the modal logics K,K4 and T and use it to derive cut-elimination for
various conditional logics in Section 6.

Example 4.7. The rule sets K,K4 and T are absorbing. We have already seen that they
absorb weakening, contraction and inversion in Example 4.2 so everything that remains to
be seen is that they also absorb cut. For (K), we need to apply cut to a formula of smaller
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size. For the two instances

(r1)
¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0,Γ
(r2)

¬B1, . . . ,¬Bk, B0

¬�B1, . . . ,¬�Bk,�B0,∆

we need to consider, up to symmetry, the cases Ai = B0, �Ai ∈ ∆ and ¬�A0 ∈ ∆,
for i = 1, . . . , n. Here, we only treat the first case for i = 1 where we have to show
that ¬�A2, . . . ,¬�An,�A0,¬�B1, . . . ,¬�Bk,Γ,∆ is derivable from GR+Cut(�A1, r1, r2),
which follows as the latter system allows us to apply cut on A1 = B0. The case �Ai ∈ ∆
and ¬�A0 ∈ ∆ are straight forward.

The argument to show that (K4) is absorbing is similar, and uses an additional (admis-
sible) instance of cut on a formula of smaller size and contraction. For (T) we only consider
instances of cut between two conclusions of

(r1)
¬A,¬�A,Γ

¬�A,Γ
(r2)

¬B,¬�B,∆

¬�B,∆

of the T-rule. We only demonstrate the case �A ∈ ∆. In this case, ∆ = ∆′,�A and we
have to show that ¬�B,Γ,∆′ can be derived in Cut(�A, r1, r2). The latter system allows
us to cut ¬�A between the conclusion of (T) on the left and the premise of the right hand
rule, i.e., we have that Cut(�A, r1, r2) ⊢ ¬B,¬�B,Γ,∆′) and an application of (T) now
gives derivability of ¬�B,Γ,∆′.

5. Equivalence of Hilbert and Gentzen Systems

We now investigate the relationship between provability in a Hilbert-system and prov-
ability in the associated Gentzen system. We note the following standard lemmas that we
will use later on.

Lemma 5.1. Suppose that Λ is a modal similarity type and R is a set of Λ-rules.

(1) Let A ∈ F(Λ) be a propositional tautology. Then GR ⊢ A.
(2) Let R be closed under substitution and Γ ∈ S(Λ). Then GR ⊢ Γσ whenever GR ⊢ Γ.

Remark 5.2. Being able to prove the previous lemma is the main reason for formulating
axioms as A,¬A,Γ where A ∈ F(Λ) rather than p,¬p,Γ. Both formulations are equivalent
if the modal congruence rule

A1 ↔ A′

1 . . . An ↔ A′

n

♥(A1, . . . , An) → ♥(A′

1, . . . , A
′

n)

is admissible. However, Lemma 5.1 can be proved without the assumption that congruence
is admissible using axioms of the form A,¬A,Γ.

Theorem 5.3. Suppose R is absorbing and substitution closed. Then GR ⊢ Γ ⇐⇒ HR ⊢∨
Γ for all Γ ∈ S(Λ).

Sketch. We only need to show the direction from right to left. Inductively assume that
HR ⊢

∨
Γ for Γ ∈ S(Λ). By Proposition 3.8 we have that there are rules Θi/Γi and

substitutions σi, i = 1, . . . , n such that

• HR ⊢ ∆σi whenever ∆ ∈ Θi (i = 1, . . . , n)
• {

∨
Γ1σ1, . . . ,

∨
Γnσn} ⊢PL

∨
Γ.
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By induction hypothesis, GR ⊢ ∆σi for all i = 1, . . . , n and ∆ ∈ Θi. By Lemma 5.1 we have

GR ⊢
∨

Γ1σ1 ∧ · · · ∧
∨

Γnσn →
∨

Γ.

The claim follows by applying cut, contraction and inversion.

The construction of an absorbing rule set from a given set of axioms and rules essentially
boils down to adding the missing instances of cut, weakening, contraction and inversion to
a given rule set. The soundness of this process is witnessed by the following two trivial
lemmas (both of which rest on the fact that HR incorporates full propositional reasoning).
We use these to derive an absorbing rule set for K in the present section, and to establish
cut-elimination for a large range of conditional logics in the next section.

Lemma 5.4. Suppose Γ1, . . . ,Γn/¬A,Γ0 and ∆1, . . . ,∆k/A,∆0 ∈ R. Then the rule
Γ1, . . . ,Γn,∆1, . . . ,∆k/Γ0,∆0 is admissible in HR.

The same applies to instances of the structural rules of weakening, contraction and inversion.
As we wish to extend the rule set while leaving the provability predicate in the Hilbert
calculus unchanged, the following formulation is handy for our purposes – in particular it
implies that we can freely use structural rules both in the premise and conclusion.

Lemma 5.5. Let Γ1, . . . ,Γn/Γ0 ∈ R. If ∆0, . . . ,∆k ∈ S(Λ) and both

{
∨

∆1, . . . ,
∨

∆k} ⊢PL

∨
Γi(1 ≤ i ≤ n) and

∨
Γ0 ⊢PL

∨
∆0

then the rule ∆1, . . . ,∆k/∆0 is admissible in HR.

This gives us a recipe for constructing rule sets that absorb contraction and cut: simply
add more rules according to the lemmas above. This will not change the notion of prov-
ability in the Hilbert system, but when this process terminates, the ensuing rule set will be
absorbing and gives rise to a cut free sequent calculus.

Example 5.6 (Modal Logic K). In a Hilbert-style calculus, the axiomatisation of K is
usually described in terms of the distribution axiom (which we view as a rule with empty
premise) and the necessitation rule:

(D) �(A → B) → �A → �B (N)
A

�A
We first apply Lemma 5.4 to break the propositional connectives in the distribution axiom.
We have that the axiom ¬�(A → B),¬�A,�B is admissible by Lemma 5.5, and applying
Lemma 5.4 to this axiom and the instance A → B/�(A → B) of the necessitation rule
gives admissibility of the all instances of

¬A,B

¬�A,�B

with the help of (admissible) propositional reasoning in the premise. The same procedure,
applied to the instances

¬A,B → C

¬�A,�(B → C)
¬�(B → C),¬�B,�C

gives admissibility of the left hand rule below,

¬A,¬B,C

¬�A,¬�B,�C

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0,Γ
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and continuing in this way and absorbing weakening, we obtain admissibility of the rule on
the right, where Γ ∈ S(Λ) is an arbitrary context. We have shown previously that this rule
set is absorbing, and it is easy to see that it is equivalent to the rule set consisting of all
instances of (N) and (D).

6. Applications: Sequent Calculi for Conditional Logics

After having seen how the construction of absorbing rule sets gives rise to cut-elimination
for a number of well-studied normal modal logics, in this section we construct a cut-free
sequent calculus for a number of conditional logics.

Conditional logics [3] are extensions of propositional logic by a non-monotonic condi-
tional A ⇒ B, read as “B holds under the condition that A”. Formulas of the form A ⇒ B
or ¬(A ⇒ B) are called conditional literals, and in such a conditional literal, we refer to A
as the (conditional) antecedent and to B as the (conditional) consequent. The conditional
implication is non-monotonic in general, i.e. the validity of A ⇒ B does not imply that
(A ∧ C) ⇒ B is also a valid statement.

Axiomatically, the first argument A of the conditional operation A ⇒ B behaves like
the � in neighbourhood frames and only supports replacement of equivalents, whereas the
second argument B obeys the rules of K. We recall from Example 3.2 (see also Figure 2)
that CK is axiomatised by the rules (RCEA) and (RCK) that we augment with a subset of
(ID), (MP) and (CEM). For each system, we apply Lemma 5.5 and Lemma 5.4 to the given
rule sets repeatedly to generate new rules that are automatically sound over the original
Hilbert system. This procedure leads to the rules summarised in Figure 3 where we have
used the following notational shorthand to express the equivalences in the premise of CK:

Notation 6.1. If A0, . . . , An ∈ F(Λ) are conditional formulas, we write A0 = · · · = An for
the sequence of sequents consisting of ¬A0, Ai and ¬Ai, A0 for all 1 ≤ i ≤ n.

We now discuss the arising system in detail, and start with those not containing (CEM) and
then proceed to add (CEM) as an additional principle. For each system, we show cut-free
completeness and develop the format of the respective rules as we go along. In summary,
we obtain the following cut-free sequent calculi for extensions of (CK) summarised in Figure
4.

6.1. Cut Elimination for Extensions of CK without CEM. We first treat extensions of
the basic conditional logic CK with axioms ID and MP, but not including CEM and discuss
CEM later, as the effect of adding CEM leads to a more general form of the CK rule.
If we absorb cuts using Lemmas 5.4 and 5.5 we see that all instances of

(CKg)
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ

are admissible in HCK. It is easy to see that the rule set CKg is actually absorbing:

Theorem 6.2. The rule set CKg is absorbing and equivalent to CK. As a consequence,
GCKg has cut-elimination and GCKg ⊢ A iff HCK ⊢ A whenever A ∈ F(Λ).

Proof. Using Lemmas 5.4 and Lemma 5.5 it is immediate that the rule set CKg is admissible
in HCK. The argument that shows that CKg is absorbing is analogous to that for the modal
logic K (Example 4.7), and the result follows from Theorem 5.3.
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(CKg)
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ

(CKIDg)
A0 = · · · = An ¬A0,¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ

(MPg)
A,¬(A ⇒ B),Γ ¬B,¬(A ⇒ B),Γ

¬(A ⇒ B),Γ

(CKCEMg)
A0 = · · · = An B0, . . . , Bj ,¬Bj+1,¬Bn

(A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn),Γ
(0 ≤ j ≤ n)

(CKCEMIDg)
A0 = · · · = An ¬A0, B0, . . . , Bj ,¬Bj+1,¬Bn

(A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn),Γ

(MPCEMg)
A, (A ⇒ B),Γ B, (A ⇒ B),Γ

(A ⇒ B),Γ

Figure 3: Cut-Free Conditional Sequent Rules

Hilbert System Sequent System

CK CKg

CKID CKIDg

CKMP CKg + MPg

CKMPID CKIDg + MPg

Hilbert System Sequent System

CKCEM CKCEMg

CKCEMID CKCEMIDg

CKCEMMP CKCEMg + MPg + MPCEMg

CKCEMMPID CKCEMIDg + MPg + MPCEMg

Figure 4: Summary of Cut-Free Sequent Systems

The logic CKID arises form CK by adding the identity axiom A ⇒ A to the rule set CKH

that axiomatises standard conditional logic. Applying Lemma 5.4 to the two rule instances

A = A ¬A,B

¬(A ⇒ A), (A ⇒ B) A ⇒ A

yields the (admissible) rule
¬A,B

A ⇒ B
.

Again applying the same lemma, this time to a general instance of (CK) and the rule that
we just derived, that is,

A0 = C = A1 · · · = An ¬D,¬B1, . . . ,¬Bn, B0

¬(C → D),¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn)

¬C,D

C ⇒ D

now gives the rule

(CKIDg)
A0 = · · · = An ¬A0,¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ

that can be again seen to be admissible by Lemma 5.5. It is easy to see that both (CK) and
(ID) are derivable under (CKID), and we note that (CKIDg) is admissible by construction.
If we denote the rule set consisting of all instances of CKID by CKIDg, we obtain:
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Proposition 6.3. The rule set CKIDg is absorbing and equivalent to CKID.

Proof. It is easy to see that CKIDg absorbs the structural rules, and that CKID is equivalent
to CKIDg.

To see that CKIDg absorbs cut, we consider two instances of (CKIDg), say

(r1)
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ

and

(r2)
C0 = · · · = Ck ¬D1, . . . ,¬Dk,D0

¬(C1 ⇒ D1), . . . ,¬(Ck ⇒ Dk), (C0 ⇒ D0),∆

and assume that the cut happens on F ∈ F(Λ). The case where F ∈ Γ,∆ is straightforward,
so assume without loss of generality that F = (A0 ⇒ B0) = (C1 ⇒ D1). By converting the
equalities in the premise, and repeatedly applying cut on A0 ≡ C1 we obtain

C0,¬Ci A0,¬Ai

C0,¬Ai

Cut(A0 ≡ C1)
¬C0, Ci ¬A0, Ai

¬C0, Ai

Cut(A0 ≡ Ci)

so that we obtain the derivability of

Σ1 = C0 = A1 = · · · = An = C2 = · · · = Ck

in GCKIDg + Cut(F, r1, r2) (recall Notation 6.1). The derivation

¬A0,¬B1, . . . ,¬Bn, B0 ¬C0,¬D1, . . . ,¬Dk,D0
Cut(B0 ≡ D1)¬A0,¬B1, . . . ,¬Bn,¬C0,¬D2, . . . ,¬Dk,D0 ¬C0, C1

Cut(C1 ≡ A0)¬C0,¬C0,¬B1, . . . ,¬Bn,¬D2, . . . ,¬Dk,D0

¬C0,¬B1, . . . ,¬Bn,¬D2, . . . ,¬Dk,D0

where contraction on (C0) was applied in the last step, shows that

Σ2 = ¬C0,¬B1, . . . ,¬Bn,¬D2, . . . ,¬Dk,D0

is derivable in GCKIDg + Cut(F, r1, r2), and applying CKIDg to Σ1 and Σ2 gives (cut-free)
derivability of the desired sequent ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬(C2 ⇒ D2), . . . ,¬(Ck ⇒
Dk), (C0 ⇒ D0),Γ,∆. This completes the case distinction on F and hence the proof of the
proposition.

Before we move to the next system, we briefly demonstrate the derivation of the identity
axiom in CKIDg.

Example 6.4. It is easy to say that GCKIDg ⊢ A ⇒ A for all A ∈ F(Λ): we pick n = 0 to
obtain the following instance of CKIDg

¬A,A

A ⇒ A
and note that the premise is in fact an axiom.

The logic CKMP arises by augmenting the logic CK with the additional axiom (A ⇒
B) → (A → B). We briefly sketch the construction of the additional axiom that gives rise
to the rule (MPg) that we will use to establish cut-free completeness.

We consider a cut between an instance of (CKg) and (MP), that is, we have the derivation
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A0 = A1 ¬B1, B0

¬(A1 ⇒ B1), (A0 ⇒ B0) ¬(A0 ⇒ B0), A0 → B0
Cut(A0 ⇒ B0)

¬(A1 ⇒ B1), A0 → B0

that leads to the rule

A0 = A1 ¬B1, B0 C = (A0 → B0)

(A1 ⇒ B1), C

by putting C = A0 → B0. By Lemma 5.4, this rule is admissible, and by Lemma 5.5 so is
the rule

A1, C ¬B1, C

¬(A1 ⇒ B1), C

and absorbing the structural rules (in particular contraction on A ⇒ B and inversion) leads
to the general form

(MPg)
A,¬(A ⇒ B),Γ ¬B,¬(A ⇒ B),Γ

¬(A ⇒ B),Γ

where we have elided the subscripts. The effect of adding (MP) is similar to that of enriching
the modal logic K with the (T)-axiom. We denote the rule set consisting of all instances of
CKg and MPg by CKMPg. Our cut elimination theorem then takes the following form:

Proposition 6.5. The rule set CKMPg is absorbing and equivalent to CKMP.

Proof. It is clear that both (CKg) and (MPg) absorb the structural rules. For cut, we first
consider cuts between two instances of (MPg), say

(r1)
A,¬(A ⇒ B),Γ ¬B,¬(A ⇒ B),Γ

¬(A ⇒ B),Γ
(r2)

C,¬(C ⇒ D),∆ ¬D,¬(C ⇒ D),∆

¬(C ⇒ D),∆

where the cut happens on F ∈ F(Λ). We distinguish several cases:
Case F = (A ⇒ B) and F ∈ ∆. Then ∆ = (A ⇒ B),∆′ for some ∆′ ∈ S(Λ). To

eliminate the cut on C, we note that the following two derivations

A,¬(A ⇒ B),Γ ¬B,¬(A ⇒ B),Γ
(MP)

¬(A ⇒ B),Γ C,¬(C ⇒ D), (A ⇒ B),∆′

(cut (F ))
C,¬(C ⇒ D),Γ,∆′

and

A,¬(A ⇒ B),Γ ¬B,¬(A ⇒ B),Γ
(MP))

¬(A ⇒ B),Γ ¬D,¬(C ⇒ D), (A ⇒ B),∆′

(cut (F ))
¬D,¬(C ⇒ D),Γ,∆′

witness that we can use both C,¬(C ⇒ D),Γ,∆′ and ¬D,¬(C ⇒ D),Γ,∆′ as axioms in
CKMPg+Cut(F, r1, r2) as the cuts occur between the premises of (r2) and conclusions of (r1).
Applying (MPg) to these axioms, we obtain that CKMPg+Cut(F, r1, r2) ⊢ ¬(C ⇒ D),Γ,∆′.

Case F = (C ⇒ D) and F ∈ Γ. This is symmetric to the case above.
Case F ∈ Γ and ¬F ∈ ∆. Then Γ = Γ′, F and ∆ = ∆′,¬F . We have to show that

¬(A ⇒ B),¬(C ⇒ D),Γ′,∆′

is derivable in Cut(F, r1, r2). We note that the deduction
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A,¬(A ⇒ B), F,Γ′ C,¬(C ⇒ D),¬F,∆′

(Cut(F ))
A,¬(A ⇒ B), C,¬(C ⇒ D),Γ′,∆′

witnesses that we may use A,¬(A ⇒ B), C,¬(C ⇒ D),Γ′,∆′ as an axiom in the system
CKMPg + Cut(F, r1, r2) as the cut on F has occurred between premises of r1 and r2. The
same deduction, with C replaced by ¬D throughout, witnesses that this is also the case
for A,¬(A ⇒ B),¬D,¬(C ⇒ D),Γ′,∆′. An application of (MPg) now yields CKMPg +
Cut(F, r1, r2) ⊢ ¬(C ⇒ D), A,¬(A ⇒ B),Γ′,∆′.

By the symmetric argument (just replace A by ¬B) we obtain that also CKMPg +
Cut(F, r1, r2) ⊢ ¬(C ⇒ D),¬B,¬(A ⇒ B),Γ′,∆′ and an application of (MPg) now yields
CKMPg + Cut(F, r1, r2) ⊢ ¬(C ⇒ D),¬(A ⇒ B),Γ′,∆′ as required.

What is left is to consider cuts, say on F ∈ F(Λ), between the conclusions of the rules

(r1)
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ

(r2)
C,¬(C ⇒ D),∆ ¬D,¬(C ⇒ D),∆

¬(C ⇒ D),∆

As before, we need to discuss several cases.
Case F ∈ Γ or ¬F ∈ Γ. Trivial, as the conclusion of the cut can be derived using a

different weakening context Γ.
Case F = (Ai ⇒ Bi) for some 1 ≤ i ≤ n. We assume without loss of generality that

i = 1 and have that F = (A1 ⇒ B1) ∈ ∆ so that ∆ = ∆′, F . To replace the cut on F , we
consider the deduction

A0 = · · · = An ¬B1, . . . ,¬Bn, B0
(CK)

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ C,¬(C ⇒ D), (A1 ⇒ B1),∆
′

(cut (F ))
¬(A2 ⇒ B2), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), C,¬(C ⇒ D),Γ,∆′

which witnesses that we may use

Σ1 = ¬(A2 ⇒ B2), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), C,¬(C ⇒ D),Γ,∆′

as an axiom in GCKMPg + Cut(F, r1, r2). The above deduction, with C replaced by ¬D
throughout, witnesses that the same is true for

Σ2 = ¬(A2 ⇒ B2), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),¬D,¬(C ⇒ D),Γ,∆′

and applying (MPg) with premises Σ1 and Σ2 yields GCKMPg + Cut(F, r1, r2) ⊢ ¬(A2 ⇒
B2), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),¬(C ⇒ D),Γ,∆′ as required.

Case F = (A0 ⇒ B0) = (C ⇒ D). We have to give a derivation of ¬(A1 ⇒
B1), . . . ,¬(An ⇒ Bn),Γ,∆ in Cut(F, r1, r2). The deduction

A0 = · · · = An ¬B1, . . . ,¬Bn, B0 (CK)
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ ¬B0,¬(A0 ⇒ B0),∆

(Cut (F ))
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬B0,Γ,∆

witnesses that we may use

Σ1 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬B0,Γ,∆
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as an axiom in GCKMPg+Cut(F, r1, r2) as the cut on F occurs between a conclusion of (r1)
and a premise of (r2). The same derivation, with ¬B0 replaced by A0 shows that the same
is true for

Σ2 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), A0,Γ,∆.

We therefore have the two derivations

Σ1 ¬B1, . . . ,¬Bn, B0 (Cut (B0))
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬B1, . . . ,¬Bn,Γ,∆

and

Σ2

¬A0, A1 (w)
¬A0, A1, B2, . . . , Bn (Cut (A0))

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), A1, B2, . . . , Bn,Γ,∆

in GCKMPg+Cut(F, r1, r2). Applying (MPg) to the conclusions of both yields that GCKMPg+
Cut(F, r1, r2) ⊢ Σ3 where

Σ3 = ¬(A1,⇒ B1), . . . ,¬(An ⇒ Bn),¬B2, . . . ,¬Bn,Γ,∆

as GCKMPg+Cut(F, r1, r2) contains the contraction rule. We now iterate the same scheme,
where we use weakening on a successively smaller subset of B2, . . . , Bn. First, we note that

Σ2

¬A0, A2 (w)
¬A0, A2,¬B3, . . . ,¬Bn (Cut (A0))

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), A2,¬B3, . . . ,¬Bn,Γ,∆

is a derivation in GCKMPg + Cut(F, r1, r2) and applying (MPg) to Σ3 and its conclusion
yields GCKMPg + Cut(F, r1, r2) ⊢ Σ4 where

Σ4 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬B3, . . . ,¬Bn

Iterating this scheme, we finally obtain

GCKMPg + Cut(F, r1, r2) ⊢ ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),Γ,∆.

Note that weakening and cuts on formulas of size < size(F ) is admissible in GCKMPg +
Cut(F, r1, r2).

Case F = (A0 ⇒ B0) and ¬F ∈ ∆. We have that ∆ = ¬(A0 ⇒ B0),∆
′ and the

deduction

A0 = · · · = An ¬B1, . . . ,¬Bn, B0
(CK)

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0),Γ C,¬(C ⇒ D),¬(A0 ⇒ B0),∆
′

(Cut(F ))
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), C,¬(C ⇒ D),Γ,∆′

witnesses that we may use

Σ2 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), C,¬(C ⇒ D),Γ,∆′

as an axiom in GCKMPg + Cut(F, r1, r2). The same derivation, with C replaced by ¬D,
shows that the same is true for

Σ2 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬D,¬(C ⇒ D),Γ,∆′

and applying (MPg) with premises Σ1 and Σ2 yields the claim GCKMPg + Cut(F, r1, r2) ⊢
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),Γ,∆

′. This finishes our analysis of cuts that may arise
between conclusions of the (CKg) and the (MPg)-rule, and hence the proof.
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As an example, we give a derivation of (MP) in the system CKMPg (in fact, a single appli-
cation of (MPg) suffices).

Example 6.6. If expressed solely in terms of ∧ and ¬, conditional modus ponens takes the
form ¬((A ⇒ B) ∧A ∧ ¬B). The following derivation establishes that (MP) is derivable in
the above form

A,¬(A ⇒ B),¬A,B ¬B,¬(A ⇒ B),¬A,B
(MPg)

¬(A ⇒ B),¬A,B
(¬¬)

¬(A ⇒ B),¬A,¬¬B
(¬∧)

¬(A ⇒ B),¬(A ∧ ¬B)
(¬∧)

¬((A ⇒ B) ∧A ∧ ¬B)

so that (MP) is derivable in CKMPg.

We now consider the logic that arises by adding both conditional modus ponens (A ⇒
B) → (A → B) and the identity axiom A ⇒ A to the logic CK. In line with our naming
conventions, this logic is called CKMPID. To obtain a cut-free axiomatisation of this logic,
we consider the rule set CKMPIDg containing all instances of CKIDg and MPg. A close
inspection of the proof of Proposition 6.5 gives that CKMPIDg is absorbing, and therefore
cut-free complete.

Proposition 6.7. The rule set CKMPIDg is absorbing and equivalent to CKMPID.

Proof. We follow the same strategy (and consider the same cases) as in the proof of Propo-
sition 6.5 where we note that the conclusions of CKg and CKIDg are identical, the only
difference being that in premise displayed on the far right in CKg and CKIDg there is one
additional (negative) literal in where CKIDg. The proof of Proposition 6.5 can now be
repeated literally by adding this extra literal to all instances of CKg, thus turning every
instance of CKg in the proof of Proposition 6.5 into an instance of CKIDg.

6.2. Cut Elimination for Extensions of CKCEM. To construct an absorbing rule set
for conditional logic plus the axiom

(CEM)(A ⇒ B) ∨ (A ⇒ ¬B)

we start from the admissible rule set for CK and close under cuts that arise with (CEM).
Repeated applications of Lemma 5.4 and Lemma 5.5 lead to the rule set

(CKCEMg)
A0 = · · · = An B0, . . . , Bj ,¬Bj+1,¬Bn

(A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn),Γ

for 0 ≤ j ≤ n.

Proposition 6.8. The rule set CKCEMg is absorbing and equivalent to CKCEM.

Proof. Again, it suffices to check that the rule set CKCEMg is absorbing, where the ab-
sorption of structural rules is clear. It therefore suffices to treat instances of cuts between
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conclusions of rules of CKCEM. Owing to the form of the CKCEMg-rule, our argument is
very similar to that used for CKg. We consider the following two instances

(r1)
A0 = · · · = An B0, . . . , Bi,¬Bi+1, . . . ,¬Bn

(A0 ⇒ B0), . . . , (Ai ⇒ Bi),¬(Ai+1 ⇒ Bi+1), . . . ,¬(An ⇒ Bn),Γ

(r2)
C0 = · · · = Cm D0, . . . ,Dj ,¬Dj+1, . . . ,¬Dm

(C0 ⇒ D0), . . . , (Cj ⇒ Dj),¬(Cj+1 ⇒ Dj+1), . . . ,¬(Cm ⇒ Dm),∆

and assume that the conclusions permit an instance of cut on F ∈ F(Λ). As usual, we
distinguish several cases, where the cases F ∈ Γ, F ∈ ∆,¬F ∈ Γ and ¬F ∈ ∆ are trivial.

Case F = (Ak ⇒ Bk) = (Cl ⇒ Dl) for k > i and 0 ≤ l ≤ j. Without loss of generality
we assume that k = n and l = 0 and get An = C0 and Bn = D0. Denote the sequent that
arises from applying cut on F to the conclusions of r1 and r2 by Σ0 and notice that, using
cuts on An ≡ C0, we have that

Σ = A0 = A1 = · · · = An−1 = C1 = · · · = Cm

is derivable in GCKCEMg + Cut(F, r1, r2). This feeds into the derivation

B0, . . . , Bi,¬Bi+1, . . . ,¬Bn D0, . . . , Dj,¬Dj+1, . . . ,¬Dm
(Cut (Bn))

B0, . . . , Bi, D1, . . . , Dj,¬Bi+1, . . . ,¬Bn−1,¬Dj+1, . . . ,¬Dm Σ
(CKCEM)

Σ0

which establishes that Cut(F, r1, r2) ⊢ Σ0 as desired.
The case F = (Ak ⇒ Bk) ≡ (Bl ⇒ Dl) for k > i and 1 ≤ l ≤ j is symmetric, which

finishes the proof.

As a consequence, cut elimination holds in CKCEMg. We show of the (CEM) can be derived
before moving on to the next calculus.

Example 6.9. If we spell out the abbreviatios of ∨ in terms of ¬ and ∧, the axiom of
conditional excluded middle takes the form ¬(¬(A ⇒ B) ∧ ¬(A ⇒ ¬B)). The following
derivation in CKCEMg shows that this form of the axiom is derivable.

A = A B,¬B
(CKCEMg)

(A ⇒ B), (A ⇒ ¬B)
(¬¬)

¬¬(A ⇒ B), (A ⇒ ¬B)
(¬¬)

¬¬(A ⇒ B),¬¬(A ⇒ ¬B)
(¬∧)

¬(¬(A ⇒ B) ∧ ¬(C ⇒ ¬B)

In this derivation, we have chosen j = n = 1 and when applying (CKCEMg) and choosing
j = 0 yields an instance of (CKg).

We now consider the extension of CK with both conditional excluded middle (A ⇒ B)∨(A ⇒
¬B) and the identity axiom (A ⇒ A) and denote the ensuing logic by CKCEMID. As in the
construction of the rule set CKIDg, we construct a rule set by applying Lemma 5.4 and 5.5
by considering cuts between an instance of (CKCEMg) (left) and a rule arising from a cut
between (CKg) and the identity axiom (right)

(CKCEMg)
A0 = · · · = An B0, . . . , Bj ,¬Bj+1,¬Bn

(A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn),Γ

¬C,D

C ⇒ D
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(where 1 ≤ j ≤ n) leads to the (admissible) rule schema

(CKCEMIDg)
A0 = · · · = An ¬A0, B0, . . . , Bj ,¬Bj+1,¬Bn

(A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn),Γ

that provides a cut-free axiomatisation of CKCEMID, as we now show.

Proposition 6.10. The rule set CKCEMIDg is equivalent to CKCEMID and absorbing.

Proof. Just as in the proof of Proposition 6.8 we consider cuts between two instances of
(CKCEMIDg) and note that the premises of (CKCEMg) and (CKCEMIDg) only differ by a
negative literal that is added to the premise on the far right in (CKCEMIDg). We consider
precisely the same cases as in the proof of Proposition 6.8. Using the same notation, we
note that the equality A0 = · · · = An in particular gives ¬An, A0 as a premise, and we use
an additional cut on A0, followed by an instance of contraction, immediately prior to the
application of (CKCEM) (that we replace by an instance of (CKCEMIDg)) to show absorption
of cut.

We now consider extending CK with both conditional modus ponens and conditional
excluded middle, but have to take care of the cuts arising between MPg and CKCEMg, which
leads to the new rule

(MPCEMg)
A, (A ⇒ B),Γ B, (A ⇒ B),Γ

(A ⇒ B),Γ

that was obtained in the same way as (MPg). If we denote the extension of CKCEMg with
MPg and MPCEMg by CKCEMMPg, we obtain:

Proposition 6.11. CKCEMMPg is absorbing and equivalent to CKCEMMP.

Proof. It is clear that the rule set CKCEMMPg absorbs the structural rules and it is easy
to see that it is equivalent to CKCEMMP. We have to show that it absorbs cut.

Cuts between the conclusions of two instances of MPg have already been treated in
the proof of Theorem 6.5, and the proof translates verbatim to cuts between instances of
MPCEMg. We consider cuts between two instances

(r1)
A, (A ⇒ B),Γ B, (A ⇒ B),Γ

(A ⇒ B),Γ
(r2)

C,¬(C ⇒ D),∆ ¬D,¬(C ⇒ D),∆

¬(C ⇒ D),∆

where the cut is performed on F ∈ F(Λ), say. The cases where either F ∈ Γ and ¬F in ∆
or F ∈ ∆ and ¬F ∈ Γ are straightforward.

Case F = (A ⇒ B) = (C ⇒ D). The derivation

A, (A ⇒ B),Γ B, (A ⇒ B),Γ
(MPCEM)

(A ⇒ B),Γ ¬B,¬(A ⇒ B),∆
(Cut (A ⇒ B))

¬B,Γ,∆

witnesses that we may use Σ1 = ¬B,Γ,∆ as an axiom in GCKCEMMP + Cut(F, r1, r2).
Similarly, the derivation

A,¬(A ⇒ B),∆ ¬B,¬(A ⇒ B),∆
(MP)

¬(A ⇒ B),∆ B, (A ⇒ B),Γ
(Cut (A ⇒ B))

B,Γ,∆
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shows that the same is true for Σ2 = B,Γ,∆: note that in both cases, the cut was performed
between an axiom and a conclusion of both rules. As size(B) < size(A ⇒ B) we may now
use cut on B to establish that GCKCEMMPg + Cut(F, r1, r2) ⊢ Γ,∆.

Case F = (A ⇒ B) and ¬F ∈ ∆. We have that ∆ = ¬(A ⇒ B),∆′. The derivation

A, (A ⇒ B),Γ B, (A ⇒ B),Γ
(MPCEM)

(A ⇒ B),Γ C,¬(C ⇒ D),¬(A ⇒ B),∆′

(Cut (F ))
C,¬(C ⇒ D),Γ,∆′

witnesses that we may use
Σ1 = C,¬(C ⇒ D),Γ,∆′

as an axiom in GCKCEMMP+ Cut(F, r1, r2). The same derivation, with C replaced by ¬D
shows that the same is true for

Σ2 = ¬D,¬(C ⇒ D),Γ,∆′

and an application of MPg yields derivability of ¬(C ⇒ D),Γ,∆′.
Case F = (C ⇒ D) and ¬F ∈ Γ. Analogous by interchaning the role of MPg and

MPCEMg.
This leaves to consider cuts between two instances of CKCEMg and MPg and between

CKCEMg and MPCEMg. We first consider the rules

(r1)
A, (A ⇒ B),Γ B, (A ⇒ B),Γ

(A ⇒ B),Γ

(r2)
A0 = · · · = An B0, . . . , Bj ,¬Bj+1, . . . ,¬Bn

A0 ⇒ B0, . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn),∆

In this setting, all cases except the case F = (A ⇒ B) = (Ai ⇒ Bi) with i > j are entirely
analogous to those considered in the proof of Theorem 6.5 where applications of CKg need
to be replaced by applications of CKCEMg. In case F = (A ⇒ B) = (Ai ⇒ Bi) with i > j
we assume without loss of generality that i = n and argue, as in the proof of Theorem 6.5,
that

Σ1 = (A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An−1 ⇒ Bn−1), Bn,Γ,∆

and

Σ2 = (A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An−1 ⇒ Bn−1), An,Γ,∆

both are axioms of GCKCEMMPg + Cut(F, r1, r2), leading to deductions ending in, repec-
tively, Σ1, B0, . . . , Bj ,¬Bj+1, . . . ,¬Bn−1 and Σ2,¬A0, B1, . . . , Bj,¬Bj+1, . . .¬Bn−1. An
application of MPg now yields derivability of (A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒
Bj+1), . . . ,¬(An−1 ⇒ Bn−1), B1, . . . , Bj ,¬Bj+1, . . . ,¬Bn−1. Iterating the same schema,
where MPCEMg is used instead of MPg to eliminate occurrences of ¬Bi for i > j finally
yields that (A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An−1 ⇒ Bn−1),Γ,∆ is
derivable in GCKCEMMPg + Cut(F, r1, r2).

To see that cuts between conclusions of CKCEMg and MPCEMg can be eliminated, one
uses the same reasoning as above, with MPCEMg and MPg interchanged.
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We note that the latter theorem was left as an open problem for the sequent system
presented in [13]. To complete the treatment of conditional logics, we now turn to the system
CKCEMMPID that arises by extending CK with the axioms correspoinding to conditional
excluded middle, conditional modus ponens and identity. It follows by construction that
the rule set CKCEMMPIDg, that we take as containing all instances of CKCEMIDg, (MPg)
and (MPCEMg) induces a calculus that is equivalent to CKCEMMPID and we just have to
establish absorption.

Proposition 6.12. The rule set CKCEMMPIDg is equivalent to CKCEMMPIDg and absorb-
ing.

Proof. It is clear that CKCEMMPIDg absorbs the structural rules (this was established
before for each rule schema). To see that cut is absorbed, we proceed as in the proof of
Proposition 6.11 where we replace every occurrence of (CKCEMg) by the corresponding
instance of (CKCEMIDg). The additional literal in the rightmost premise of (CKCEMIDg)
is treated in the same way as in the proof of Proposition 6.3.

In summary, we obtain the following results about extensions of the conditional logic
CK.

Theorem 6.13. Suppose that L is a combination of ID, MP, CEM. Then GLg ⊢ A whenever
HL ⊢ A for all A ∈ F(Λ). Moreover, cut elimination holds in GL.

The theorem follows, in each of the cases, from Theorem 4.6 and Theorem 5.3 together with
the fact that the rule set L and Lg are equivalent and the latter is absorbing.

7. Complexity of Proof Search

It is comparatively straightforward to extract complexity bounds for provability of
the logics considered above by analysing the complexity of proof search under suitable
strategies in the cut-free sequent systems obtained. Clearly, in those cases where all modal
rules peel off exactly one layer of modal operators, the depth of proofs is polynomial in
the nesting depth of modal operators in the target formula, and therefore, proof search is
in PSPACE under mild assumptions on the branching width of proofs [18, 14]. Besides
reproving Ladner’s classical result for K [12], we thus have

Theorem 7.1. Provability in CK and CKID is in PSPACE.

This reproves known complexity bounds originally shown in [13] (alternative short
proofs using coalgebraic semantics are given in [17]). For CKCEM, the bound can be im-
proved to coNP using dynamic programming in the same style as in [20]. This concept has
to be handled carefully when dealing with coNP bounds, however, as in nondeterministic
programs we cannot actually pretend that during the execution of stage n we have the
results of the stages up to n− 1 stored in memory — otherwise, we could, e.g., just negate
these results and arrive at proving NP=coNP. Rather, dynamic programming should be re-
garded as a metaphor for merging identical computations on a non-deterministic machine;
in particular, we need to take care to use results of previous stages only positively (as done
in [20]).

The point in our decision procedure where these considerations become relevant is that
we will wish to apply rule (CKCEMg) deterministically to subsequents that are as large as
possible; i.e. we are interested in collecting maximal sets of conditional literals with provably
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equivalent antecedents, where the latter equivalences are supposed to have been computed
in previous stages. Here, the maximality condition carries the danger of negative use of
previous results. The solution to this problem lies in the following key lemma.

Lemma 7.2. Let Γ = (A0 ⇒ B0), . . . , (Aj ⇒ Bj), Aj+1 ⇒ Bj+1, . . . , An ⇒ Bn be a sequent
consisting of conditional literals. Then Γ is provable in CKCEMg iff for every decomposition
of {0, . . . , n} into disjoint sets I0, . . . , Ik (k ≥ 0), one of the following conditions holds.

(1) There exists l such that {Bi | i ∈ Il, 0 ≤ i ≤ j}∪{¬Bi | i ∈ Il, j+1 ≤ i ≤ n} is provable.
(2) There exist l 6= r and i ∈ Il, p ∈ Ir such that Ai = Ap is provable.

Proof. Only if: Since Γ consists of conditional literals, any proof of Γ must end in an
application of rule CKCEMg. Thus, there exists I ⊆ {0, . . . , n} such that Ai = Ap is
provable for all i, p ∈ I and {Bi | i ∈ I, 0 ≤ i ≤ j} ∪ {¬Bi | i ∈ I, j +1 ≤ i ≤ n} is provable.
Now let Io, . . . , Ik be as in the statement. Then we have the following two cases:

(1) There exists l such that I ⊆ Il. In this case, the first alternative of the claim holds.
(2) We have i, p ∈ I and r 6= l such that i ∈ Ir, p ∈ Il. In this case, the second alternative

of the claim holds.

If: Define an equivalence relation on {0, . . . , n} by taking i and p to be equivalent if Ai = Ap

is provable, and let I1, . . . , Ik be the induced disjoint decomposition of {0, . . . , n} into equiv-
alence classes. By construction, this decomposition does not satisfy the second alternative
of the claim, hence it satisfies the first, which implies that Γ is provable by applying rule
CKCEMg.

This lemma now enables us to prove the announced coNP upper bound:

Theorem 7.3. Provability in CKCEM and in CKIDCEM is in coNP.

Proof. Since some aspects of our algorithm are more easily understood in NP style, we prove
that unprovability of a sequent Γ can be decided in NP. We use dynamic programming as
in [20]: we proceed in stages; at stage i, we decide unprovability of all sequents of the form
A,¬B where A and B are subformulas of Γ with nesting depth of conditionals at most
i. We perform such stages up to i = m − 1, where m is the maximal nesting depth of
conditionals in Γ. In a further, final stage, we then check unprovability of Γ. As there are
at most linearly many stages, it suffices to show that each stage can be performed in NP,
and since there are at most quadratically many candidate sequents in each stage, it suffices
that unprovability of a single candidate sequent can be checked in NP at each stage.

To this end, observe that proofs may generally be normalised to proceed as follows:
first apply the propositional rules as long as possible, thus decomposing target sequents
into sequents over conditional literals, i.e. literals of the form A ⇒ B or ¬(A ⇒ B), in the
various branches of the proof, and only apply (CKCEMg) when no more propositional rules
are applicable (since all propositional rules monotonically increase the set of conditional
literals when moving from the conclusion to the premises, it is clear that their – backwards –
application never obstructs a possible application of (CKCEMg)). The existential branching
that arises from the conjunction rule (A ∧ B,∆ is unprovable if either A,∆ or B,∆ is
unprovable) is handled non-deterministically. It is clear that one can apply only linearly
many propositional rules in any given branch of the computation.

The application of rule (CKCEMg) after exhaustion of the propositional rules is handled
according to Lemma 7.2: to check that a sequent of the form ∆ = A0 ⇒ B0, . . . , Aj ⇒
Bj,¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn) is unprovable, we guess a disjoint decomposition
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I1, . . . , Ik of {0, . . . , n} and check that it violates Conditions (1) and (2) in the Lemma; the
negation of these conditions introduces universal quantifiers over polynomial-sized ranges,
which we check deterministically. Here, checking violation of Condition (2) amounts to
using unprovability of quadratically many sequents checked in previous stages, which from
the perspective of the present stage can be done in polynomial time. Checking violation
of Condition (1) is more problematic, as it involves a recursive check of unprovability of
sequents ∆l = {Bi | i ∈ Il, 0 ≤ i ≤ j} ∪ {¬Bi | i ∈ Il, j + 1 ≤ i ≤ n} for all 1 ≤ l ≤ k;
specifically, we have to ensure that this recursion, whose depth is limited by the nesting
depth of conditionals in Γ, does not lead to exponentially long computation paths.

To this end, we note that the breadth of the part of the proof tree that we explore in
one computation is given by a function f(∆) that obeys a recursive equation of the form

f(∆) =
k∑

l=0

f(∆l)

where

size(∆) ≥
k∑

l=0

size(∆l) (7.1)

because I0, . . . , Ik is a disjoint decomposition of {0, . . . , n}. It follows easily that f(∆) is
at most linear in ∆, and hence the overall size of the part of the proof tree explored in
one computation is at most quadratic. This finishes the proof for the case of CKCEM.
The proof for CKIDCEM is entirely analogous, noting that although the main premise in
rule (CKIDCEMg) is by one literal ¬A0 larger that in the case of (CKCEMg), estimate (7.1)
remains true.

More interesting are those cases where some of the modal operators from the conclusion
remain in the premise, such as T, K4, CKMP, and CKMPCEM (where the difference between
non-iterative logics, i.e. ones whose Hilbert-axiomatisation does not use nested modalities,
such as T, CKMP, and CKMPCEM, and iterative logics such as K4 is surprisingly hard to
spot in the sequent presentation). For K4, the standard approach is to consider proofs of
minimal depth, which therefore never attempt to prove a sequent repeatedly, and analyse
the maximal depth that a branch of a proof can have without repeating a sequent. For T, a
different strategy is used, where the (T ) rule is limited to be applied at most once to every
formula of the form ¬�A in between two applications of (K) [10]. A similar strategy works
for the conditional logics CKMP and CKMPCEM, which we explain in some additional detail
for CKMP.

We let CKMP
0
g and CKMP

1
g denote restricted sequent systems, defined as follows.

• In CKMP
0
g, a formula ¬(A ⇒ B) is marked on a branch as soon as the rule (MPg) has

been applied to it (backwards) and unmarked only at the next application of rule (CKg).
Rule (MPg) applies only to unmarked formulas.

• In CKMP
1
g, we instead impose a similar restriction where rule (MPg) applies to a sequent

¬(A ⇒ B),Γ only in case Γ does not contain a propositional descendant of either A or
¬B. Here, a sequent ∆ is called a propositional descendant of a formula A if it can be
generated from A by applying propositional sequent rules backwards. Formally, the set
D of propositional descendants of A is the closure of {A} under the inversion rules. (E.g.
the propositional descendants of (¬(A ∧ B) ∧ C) are (¬(A ∧ B) ∧ C); ¬(A ∧ B); C; and
¬A,¬B.)
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Our goal is to show that CKMPg, CKMP
0
g, and CKMP

1
g prove the same sequents. Here, two

inclusions are easy to show:

Lemma 7.4. Every sequent that is provable in CKMP
1
g is provable in CKMP

0
g, and every

sequent that is provable in CKMP
0
g is provable in CKMPg.

Proof. The second implication is trivial, since CKMP
0
g explicitly restricts CKMPg. The first

implication follows from the fact that whenever an occurrence of a formula ¬(A ⇒ B) is
marked in a sequent ¬(A ⇒ B),Γ in a CKMP

0
g proof, then Γ must contain a propositional

descendant of either A or ¬B.

Next, we observe:

Lemma 7.5. The system CKMP
1
g admits inversion.

Proof. The inductive proof for CKMPg can just be copied due to the fact that absorption
of inversion by CKMPg never involves the introduction of additional applications of (MPg),
and the conclusion of instances of inversion never introduces additional propositional de-
scendants (unlike, e.g., in the case of weakening).

This enables us to prove the missing inclusion:

Lemma 7.6. Every sequent that is provable in CKMPg is provable in CKMP
1
g.

Proof. By Lemma 7.5, it suffices to prove that we can replace backwards applications of
(MPg) to sequents ¬(A ⇒ B),Γ with Γ containing a propositional descendant of either
A or ¬B, with subproofs using inversion. This is clear: e.g. if Γ contains a propositional
descendant of A, then ¬(A → B),Γ can be proved from ¬(A → B), A,Γ alone by repeated
application of inversion.

Corollary 7.7. The systems CKMPg and CKMP
0
g prove the same sequents.

This determines the complexity of proof search in CKMP:

Corollary 7.8. Provability in CKMP is in PSPACE.

Proof. By Corollary 7.7, it suffices to show that proof search in CKMP
0
g is in PSPACE. The

latter is shown analogously to Theorem 7.1, as proofs in CKMP
0
g are easily seen to have at

most polynomial depth.

The same line of reasoning applies essentially without change to CKIDMP, so that provability
in CKIDMP is in PSPACE.

The same approach works for logics that include (CEM), with the only actual modi-
fication being that in the systems CKMPCEM

0
g and CKIDMPCEM

0
g, backwards application

of both (MPg) and (MPCEMg) is restricted to unmarked formulas. Equivalence of the re-
stricted systems to the full systems is shown in the same manner as for CKMP. We then
have, in analogy to Theorem 7.3

Theorem 7.9. Provability in CKMPCEM and in CKIDMPCEM is in PSPACE.

We note that the complexity of CKMPCEM was explicitly left open in [13]. We also note
that regrettably we were not able to reproduce our claim from [18] that CKMPCEM is in
coNP, the problem being that the estimate (7.1) breaks down in the presence of (MPg) and
(MPCEM)g; since no better lower bound than coNP is currently known for CKMPCEM and
CKIDMPCEM, this means that the exact complexity of these logics remains open.
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8. Conclusions

We have established a generic method of cut elimination in modal sequent system based
on absorption of cut and structural rules by sets of modal rules. We have applied this
method in particular to various conditional logics, thus obtaining cut-free unlabelled sequent
calculi that complement recently introduced labelled calculi [13]. In at least one case,
the conditional logic CKMPCEM with modus ponens and conditional excluded middle, our
calculus seems to be the first cut-free calculus in the literature, as cut elimination for
the corresponding calculus in [13] was explicitly left open. We have applied these calculi
to obtain complexity bounds on proof search in conditional logics; in particular we have
reproved known upper complexity bounds for CK, CKID, CKMP [13] and improved the bound
for CKCEM and CKIDCEM from PSPACE to coNP using dynamic programming techniques
following [20]. Moreover, we have obtained an upper bound PSPACE for CKMPCEM, for
which no bound has previously been published; a strong suspicion remains, however, that
this logic is actually in coNP. We conjecture that our general method can also be applied
to other base logics, e.g. intuitionistic propositional logic or first-order logic; this is the
subject of further investigations.
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[14] D. Pattinson and L. Schröder. Cut elimination in coalgebraic logics. Inform. Comput. To appear.
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