Skip to main content

Generic Modal Cut Elimination Applied to Conditional Logics

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5607))

Abstract

We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity are explicitly stated as open in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avron, A., Lev, I.: Canonical propositional gentzen-type systems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 529–544. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  3. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: Logic in Computer Science, LICS 2008, pp. 229–240. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  4. Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut-elimination. Stud. Log. 82, 95–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z. 39, 176–210 (1934)

    Article  MathSciNet  Google Scholar 

  6. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996)

    Google Scholar 

  7. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6 (1977)

    Google Scholar 

  8. Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Logic 8(4) (2007)

    Google Scholar 

  9. Pattinson, D., Schröder, L.: Admissibility of cut in coalgebraic logics. In: Coalgebraic Methods in Computer Science, CMCS 2008. ENTCS, vol. 203, pp. 221–241. Elsevier, Amsterdam (2008)

    Google Scholar 

  10. Rasga, J.: Sufficient conditions for cut elimination with complexity analysis. Ann. Pure Appl. Logic 149, 81–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schröder, L., Pattinson, D.: Shallow models for non-iterative modal logics. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS(LNAI), vol. 5243, pp. 324–331. Springer, Heidelberg (2008)

    Google Scholar 

  12. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Log. 10(2:13), 1–33 (2009)

    Article  Google Scholar 

  13. Vardi, M.: On the complexity of epistemic reasoning. In: Logic in Computer Science, LICS 1989, pp. 243–251. IEEE, Los Alamitos (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pattinson, D., Schröder, L. (2009). Generic Modal Cut Elimination Applied to Conditional Logics. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02716-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02715-4

  • Online ISBN: 978-3-642-02716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics