Abstract
We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity are explicitly stated as open in the literature.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avron, A., Lev, I.: Canonical propositional gentzen-type systems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 529–544. Springer, Heidelberg (2001)
Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)
Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: Logic in Computer Science, LICS 2008, pp. 229–240. IEEE Press, Los Alamitos (2008)
Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut-elimination. Stud. Log. 82, 95–119 (2006)
Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z. 39, 176–210 (1934)
Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996)
Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6 (1977)
Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Logic 8(4) (2007)
Pattinson, D., Schröder, L.: Admissibility of cut in coalgebraic logics. In: Coalgebraic Methods in Computer Science, CMCS 2008. ENTCS, vol. 203, pp. 221–241. Elsevier, Amsterdam (2008)
Rasga, J.: Sufficient conditions for cut elimination with complexity analysis. Ann. Pure Appl. Logic 149, 81–99 (2007)
Schröder, L., Pattinson, D.: Shallow models for non-iterative modal logics. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS(LNAI), vol. 5243, pp. 324–331. Springer, Heidelberg (2008)
Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Log. 10(2:13), 1–33 (2009)
Vardi, M.: On the complexity of epistemic reasoning. In: Logic in Computer Science, LICS 1989, pp. 243–251. IEEE, Los Alamitos (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pattinson, D., Schröder, L. (2009). Generic Modal Cut Elimination Applied to Conditional Logics. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-02716-1_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02715-4
Online ISBN: 978-3-642-02716-1
eBook Packages: Computer ScienceComputer Science (R0)