Abstract
We consider encoding finite automata as least fixed points in a proof-theoretical framework equipped with a general induction scheme, and study automata inclusion in that setting. We provide a coinductive characterization of inclusion that yields a natural bridge to proof-theory. This leads us to generalize these observations to regular formulas, obtaining new insights about inductive theorem proving and cyclic proofs in particular.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baelde, D.: A linear approach to the proof-theory of least and greatest fixed points. PhD thesis, Ecole Polytechnique (December 2008)
Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 391–397. Springer, Heidelberg (2007)
Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 92–106. Springer, Heidelberg (2007)
Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)
Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus. Acta Informatica 27, 725–747 (1990)
Girard, J.-Y.: A fixpoint theorem in linear logic. An email posting to the mailing list linear@cs.stanford.edu (February 1992)
McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theoretical Computer Science 232, 91–119 (2000)
Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. on Computational Logic 6(4), 749–783 (2005)
Momigliano, A., Tiu, A.: Induction and co-induction in sequent calculus. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 293–308. Springer, Heidelberg (2004)
Santocanale, L.: A calculus of circular proofs and its categorical semantics. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 357–371. Springer, Heidelberg (2002)
Schroeder-Heister, P.: Rules of definitional reflection. In: Vardi, M. (ed.) Eighth Annual Symposium on Logic in Computer Science, June 1993, pp. 222–232. IEEE Computer Society Press, IEEE, Los Alamitos (1993)
Spenger, C., Dams, M.: On the structure of inductive reasoning: Circular and tree-shaped proofs in the μ-calculus. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 425–440. Springer, Heidelberg (2003)
Tiu, A.: Model checking for π-calculus using proof search. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 36–50. Springer, Heidelberg (2005)
Tiu, A., Nadathur, G., Miller, D.: Mixing finite success and finite failure in an automated prover. In: Empirically Successful Automated Reasoning in Higher-Order Logics (ESHOL 2005), December 2005, pp. 79–98 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baelde, D. (2009). On the Proof Theory of Regular Fixed Points. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-02716-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02715-4
Online ISBN: 978-3-642-02716-1
eBook Packages: Computer ScienceComputer Science (R0)