Skip to main content

Decidability for Priorean Linear Time Using a Fixed-Point Labelled Calculus

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5607))

Abstract

A labelled sequent calculus is proposed for Priorean linear time logic, the rules of which reflect a natural closure algorithm derived from the fixed-point properties of the temporal operators. All the rules of the system are finitary, but proofs may contain infinite branches. Soundness and completeness of the calculus are stated with respect to a notion of provability based on a condition on derivation trees: A sequent is provable if and only if no branch leads to a ‘fulfilling sequent,’ the syntactical counterpart of a countermodel for an invalid sequent. Decidability is proved through a terminating proof search procedure, with an exponential bound to the branches of derivation trees for valid sequents, calculated on the length of the characteristic temporal formula of the endsequent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boretti, B.: Proof Analysis in Temporal Logic, Ph.D. Thesis, Univ. of Milan (2008)

    Google Scholar 

  2. Boretti, B., Negri, S.: On the finitization of Priorean linear time. In: SILFS 2007. Proceedings of the International Conference of the Italian Society for Logic and Philosophy of Science. College Publications (in press, 2009)

    Google Scholar 

  3. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite descent. In: LICS 2007. Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, pp. 51–62. IEEE Computer Society, Washington (2007)

    Chapter  Google Scholar 

  4. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. Journal of Logic and Algebraic Programming 76, 216–225 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coquand, T.: Decidability Proof of LTL (unpublished note, 2007), http://www.cs.chalmers.se/~coquand/LOGIC/ltl.pdf

  6. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: Decision algorithm for full propositional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 97–109. Springer, Heidelberg (1993)

    Google Scholar 

  7. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and completeness. Logic Journal of IGPL 8, 55–85 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Negri, S.: Proof analysis in modal logic. J. of Phil. Logic 34, 507–544 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Negri, S.: Proof analysis in non-classical logics. In: Dimitracopoulos, C., Newelski, L., Normann, D., Steel, J. (eds.) Logic Colloquium 2005, ASL Lecture Notes in Logic, vol. 28, pp. 107–128. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  10. Negri, S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds.) Acts of Knowledge - History, Philosophy and Logic. College Publications (in press, 2009)

    Google Scholar 

  11. Schmitt, P.H., Goubault-Larrecq, J.: A tableau system for linear-TIME temporal logic. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 130–144. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Schwendimann, S.: A New One-Pass Tableau Calculus for PLTL. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS(LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Sistla, A.P., Clarke, E.M.: The Complexity of Propositional Linear Temporal Logics. Journal of the ACM 32, 733–749 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wolper, P.: The tableau method for temporal logic: An overview. Logique et Analyse 110-111, 119–136 (1985)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boretti, B., Negri, S. (2009). Decidability for Priorean Linear Time Using a Fixed-Point Labelled Calculus. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02716-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02715-4

  • Online ISBN: 978-3-642-02716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics