Skip to main content

Mobility Models for Mobility Management

  • Chapter
Network Performance Engineering

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5233))

Abstract

The main goals of today’s wireless mobile telecommunication systems are to provide both, mobility and ubiquity to mobile terminals (MTs) with a required quality of service. By ubiquity we understand the ability of a MT to be connected to the network anytime, anywhere, regardless of the access channel’s characteristics. In this chapter we deal with mobility aspects. We provide some basic background on mobility models that are being used in performance evaluation of relevant mobility management procedures, such as handover and location update. For handover, and consequently for channel holding time, we revisit the characterization of the cell residence time. Then, based on those previous results, models for the location area residence time are built. Cell residence time can be seen as a micro-mobility parameter while the latter can be considered as a macro-mobility parameter; and both have a significant impact on the handover and location update algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleinrock, L.: Queuing theory. John Wiley Sons, Chichester (1975)

    MATH  Google Scholar 

  2. Augustin, R., Buscher, K.J.: Characteristics of the COX-distribution. ACM Sigmetrics Performance Evaluation Review 12(1), 22–32 (Winter 1982-1983)

    Google Scholar 

  3. Hong, D., Rappaport, S.S.: Traffic model and performance analysis for cellular mobile radiotelephone system with prioritized and non prioritized handoff procedures- version 2a. Technical report No. 773 State University of New Your at Stony Brook; Previously published at IEEE Trans. on Vehicular Technology 35(3), 877–922 (August 1986)

    Google Scholar 

  4. Stadje, W.: The exact probability distribution of a two-dimensional random walk. Journal of Statistical Physics 46(1/2), 207–216 (1987)

    Article  MathSciNet  Google Scholar 

  5. Guerin, R.A.: Channel occupancy time distribution in a cellular radio system. IEEE Trans. on Vehicular Technology 36(3), 89–99 (1987)

    Article  Google Scholar 

  6. Morales-Andres, G., Villen-Altamirano, M.: An approach to modelling subscriber mobility in cellular radio networks. In: Proceedings of the Forum Telecom 1987, Geneva, Switzerland, December 1987, pp. 185–189 (1987)

    Google Scholar 

  7. Thomas, R., Gilbert, H., Maziotto, G.: Influence of the moving of the mobile stations on the performance of a radio mobile cellular network. In: Proceedings of the 3rd Nordic Seminar on Digital Land Mobile Radio Communications, Paper 9.4, Copenhagen Denmark (September 1988)

    Google Scholar 

  8. Leon-Garcia, A.: Probability and random processes for electrical engineering. Addisson-Wesley, Reading (1989)

    MATH  Google Scholar 

  9. El-Dolil, S.A., Wong, W.C., Steelet, R.: Teletraffic performance of highway microcells with overlay macrocell. IEEE Journal Selected Areas Communications 7(1), 71–78 (1989)

    Article  Google Scholar 

  10. McMillan, D.: Traffic modelling and analysis for cellular mobile networks. In: Proceedings of the ITC 13th, Copenhaguen, June 19-26, pp. 627–632 (1991)

    Google Scholar 

  11. May, A.: Traffic flow fundamentals. Prentice-Hall, Englewood Cliffs (1990)

    Google Scholar 

  12. Harborth, H.: Concentric cycles in mosaic graphs. In: Berum, G.E., et al. (eds.) Applications of Fibonnacci Numbers, pp. 123–128. Kluwer Academic Publishers, Dordrecht (1990)

    Chapter  Google Scholar 

  13. Alonso, E., Meier-Hellstern, K.S., Polini, G.P.: Influence of cell geometry on handover and registration rates in cellular and universal personal telecommunication networks. In: Proceedings of the 8th ITC Specialist Seminar on Universal Personal Telecommunications, Santa Margherita Ligure, Genova, Itay, October 12-14, pp. 261–260 (1992)

    Google Scholar 

  14. Xie, H., Kuek, S.: Priority handoff analysis. In: Proceedings of the 43th IEEE VTC, pp. 855–888 (1993)

    Google Scholar 

  15. Xie, H., Goodman, D.J.: Mobility models and the biased sampling problem. In: Proceedings of the 2nd ICUP, Ottawa, Canada, pp. 855–888 (1993)

    Google Scholar 

  16. Barber, B.C.: The non-isotropic two-dimensional random walk. Waves in Random Media 3, 243–256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bauman, F.V., Niemegeers, I.G.: An evaluation of location management procedures. In: Proceedings of the 3rd ICUPC, San Diego, California, September 27-October 1, pp. 359–364 (1994)

    Google Scholar 

  18. Leung, K.K., Massey, W.A., Whitt, W.: Traffic models for wireless communication networks. IEEE Journal Selected Areas in Communications 12(8), 1353–1634 (1994)

    Article  Google Scholar 

  19. Bar-Noy, A., Kessler, I., Sidi, M.: Mobile users: To update or not to update? Wireless Networks 1(2), 175–185 (1995)

    Article  Google Scholar 

  20. Alfa, A.S., Neuts, M.F.: Modelling vehicular traffic using the discrete time Markovian arrival process. Transportation Science 29(2), 109–117 (1995)

    Article  MATH  Google Scholar 

  21. Polini, G.P.: Trends in handover design. IEEE Communications Magazine 34(3), 82–90 (1996)

    Article  Google Scholar 

  22. Akyildiz, I.F., Ho, J.S.M., Lin, Y.-B.: Movement based location update and selective paging for PCS networks. IEEE/ACM Trans. on Networking 4(4), 629–638 (1996)

    Article  Google Scholar 

  23. Yeung, K.L., Nanda, S.: Channel management in microcell - macrocell cellular radio systems. IEEE Trans.on Vehicular Technology 45(4), 601–612 (1996)

    Article  Google Scholar 

  24. Lam, D., Cox, D.C.: Teletraffic modeling for personal communications service. IEEE Communications Magazine 35(2), 79–87 (1997)

    Article  Google Scholar 

  25. Zonoozi, M.M., Dassanayake, P.: User mobility modeling and characterization of mobility patterns. IEEE Journal Selected Areas in Communications 15(7), 1239–1252 (1997)

    Article  Google Scholar 

  26. Markoulidakis, J.G., Lyberopoulos, G.L., Tsirkas, D.F., Sykas, E.D.: Mobility modeling in third-generation mobile telecommunications systems. IEEE Personal Communications 4(4), 41–56 (1997)

    Article  Google Scholar 

  27. Rose, C., Yates, R.: Location uncertainty in mobile networks. A theoretical framework. IEEE Communications Magazien 35(2), 94–101 (1997)

    Article  Google Scholar 

  28. Lieu, H.: Revised monograph on traffic flow theory. U.S. Department of Transportation Federal Highway Administration Research, Development, and Technology. Transportation Research Board. Turner-Fairbank Highway Research Center. 6300 Georgetown Pike McLean, Virginia (November 1997)

    Google Scholar 

  29. Cho, M., Kim, K., Szidarovszky, F., You, Y., Cho, K.: Numerical analysis of the dwell time distribution in mobile cellular communication systems. IEICE Trans. Commun. E81-B(4), 715–721 (1998)

    Google Scholar 

  30. Ruggieri, M., Graziosi, F., Santucci, F.: Modeling of the handover dwell time in cellular mobile communications systems. IEEE Trans. Vehiclar Technology 47(2), 489–498 (1998)

    Article  Google Scholar 

  31. Norris, J.R.: Markov Chain. University of Cambridge (1998)

    Google Scholar 

  32. Orlik, P.V., Rappaport, S.S.: A model for teletraffic performance and channel holding time characterization in wireless cellular communication with general session and dwell time distributions. IEEE Journal on Selected Areas in Communications 16(5), 788–803 (1998)

    Article  Google Scholar 

  33. Burdzy, K.: Brownian motion. A tutorial. PPT presentation. University of Washington

    Google Scholar 

  34. Fang, Y., Chlamtac, I.: Teletraffic analysis and mobility modeling of PCS networks. IEEE Trans. on Communications 47(7), 1062–1072 (1999)

    Article  Google Scholar 

  35. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM serie (1999)

    Google Scholar 

  36. Goodman, J.W.: Statistical Optics. John Wiley, Chichester (2000)

    Google Scholar 

  37. Sánchez, M., Manzoni, P.: ANEJOS: a Java based simulator for ad hoc networks. Best of Websim 1999 in Future Generation Computer Systems 17(5), 573–583 (2001)

    Google Scholar 

  38. Bettstetter, C.: Mobility modeling in wireless networks: Categorization, Smooth Movement, and Border Effects. SIGMOBILE Mob. Comput. Commun. Rev. 5(3), 55–66 (2001)

    Article  Google Scholar 

  39. Casares-Giner, V.: Variable bit rate voice using hysteresis thresholds. Telecommunication Systems 17(1-2), 31–62 (2001)

    Article  MATH  Google Scholar 

  40. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)

    Article  Google Scholar 

  41. Pla, V., Casares-Giner, V.: Analytical-Numerical study of the handoff area sojourn time. In: Proceedings Globecom 2002, pp. 886–890 (2002)

    Google Scholar 

  42. Kmet, A., Petkovsek, M.: Gambler’s ruin problem in several dimensions. Advances in Applied Mathematics, vol. 28, pp. 107–117 (2002)

    Google Scholar 

  43. Liang, B., Haas, Z.J.: Predictive distance-based mobility management for multidimensional PCS networks. IEEE/ACM Trans. on Networking 11(5), 718–732 (2003)

    Article  Google Scholar 

  44. Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users research. Personal Ubiquitous Comput. 7(5), 275–286 (2003)

    Article  Google Scholar 

  45. Jardosh, A., BeldingRoyer, E.M., Almeroth, K.C., Suri, S.: Towards realistic mobility models for mobile Ad hoc networks. In: Proceedings of the MobiCom Conference, San Diego, California, USA, September 14-19 (2003)

    Google Scholar 

  46. Schweigel, M.: The Cell residence time in rectangular cells and its exponential approximation. In: ITC 18th, Berlin, August 31- September 5 (2003)

    Google Scholar 

  47. Hald, A.: History of probability and statistics and their applications before 1750. John Wiley, Chichester (2003)

    MATH  Google Scholar 

  48. Casares-Giner, V., García-Escalle, P.: An hybrid movement–distance based location update strategy for mobility tracking. In: Proceedings of the European Wireless 2004, Barcelona, Spain, February 24-27, pp. 121–127 (2004)

    Google Scholar 

  49. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the random waypoint mobility model. ACM/Kluwer Wireless Networks: Special Issue on Modeling and Analysis of Mobile Networks 10(5) (September 2004)

    Google Scholar 

  50. Hyytia, E., Lassila, P., Nieminen, L., Virtamo, J.: Spatial node distribution in the random waypoint mobility model. COST279TD(04)029 (September 2004)

    Google Scholar 

  51. Roess, R.P., Prassas, E.S., McShare, W.R.: Traffic engineering. Pearson, Prentice Hall (2004)

    Google Scholar 

  52. Gloss, B., Scharf, M., Neubauer, D.: A more realistic random direction mobility model. In: TD(05)052, 4th Management Committee Meeting, Würzburg, Germany, October 13-14 (2005)

    Google Scholar 

  53. Yoon, J., Noble, B.D., Liu, M., Kim, M.: Building realistic mobility models from coarse-grained traces. In: Proceedings of the MobiSys 2006, Uppsala, Sweden, June 19-22, pp. 177–189 (2006)

    Google Scholar 

  54. Hyytia, E., Lassila, P., Virtamo, J.: Spatial node distribution of the random waypoint mobility model with applications. IEEE Trans. on Mobile Computing 5(6), 680–694 (2006)

    Article  Google Scholar 

  55. Garetto, M., Leonardi, E.: Analysis of random mobility models with partial differential equations. IEEE Trans. on Mobile Computing 6(11), 1204–1217 (2007)

    Article  Google Scholar 

  56. Sricharan, M.S., Vaidehi, V.: Mobility patterns in macrocellular wireless. In: IEEE - ICSCN 2007, February 22-24, pp. 128–132. MIT Campus, Anna University, Chennai, India (2007)

    Google Scholar 

  57. Ollila, E.: On the circularity of a complex random variable. IEEE Signal Processing Letters 15, 841–844 (2008)

    Article  Google Scholar 

  58. Casares-Giner, V., Garcia-Escalle, P.: On Movement-Based Location Update. A Lookahead Strategy. In: Proceedings of the NGI 2009, Aveiro, Portugal (July 2009)

    Google Scholar 

  59. Carofiglio, G., Chiasserini, C.F., Garetto, M., Leonardi, E.: Route stability in MANETs under the random direction mobility model. IEEE Trans. on Mobile Computing 8(6), 1167–1179 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casares-Giner, V., Pla, V., Escalle-García, P. (2011). Mobility Models for Mobility Management. In: Kouvatsos, D.D. (eds) Network Performance Engineering. Lecture Notes in Computer Science, vol 5233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02742-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02742-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02741-3

  • Online ISBN: 978-3-642-02742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics