Skip to main content

Efficiently Calculating Evolutionary Tree Measures Using SAT

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2009 (SAT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5584))

  • 1960 Accesses

Abstract

We develop techniques to calculate important measures in evolutionary biology by encoding to CNF formulas and using powerful SAT solvers. Comparing evolutionary trees is a necessary step in tree reconstruction algorithms, locating recombination and lateral gene transfer, and in analyzing and visualizing sets of trees. We focus on two popular comparison measures for trees: the hybridization number and the rooted subtree-prune-and-regraft (rSPR) distance. Both have recently been shown to be NP-hard, and efficient algorithms are needed to compute and approximate these measures. We encode these as a Boolean formula such that two trees have hybridization number k (or rSPR distance k) if and only if the corresponding formula is satisfiable. We use state-of-the-art SAT solvers to determine if the formula encoding the measure has a satisfying assignment. Our encoding also provides a rich source of real-world SAT instances, and we include a comparison of several recent solvers (minisat, adaptg2wsat, novelty+p, Walksat, March KS and SATzilla).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Annals of Combinatorics 5, 1–13 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baroni, M., Semple, C., Steel, M.: Hybrids in real time. Systematic Biology 55, 46–56 (2006)

    Article  Google Scholar 

  3. Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evol. Biol. 6, 15 (2006)

    Article  Google Scholar 

  4. Bonet, M.L., John, K.S., Mahindru, R., Amenta, N.: Approximating subtree distances between phylogenies. Journal of Computational Biology 13(8), 1419–1434 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8, 409–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent evolutionary history. Discrete Applied Mathematics (2007)

    Google Scholar 

  7. Bordewich, M., Linz, S., John, K.S., Semple, C.: A reduction algorithm for computing the hybridization number of two trees. Evolutionary Bioinformatics 3, 86–98 (2007)

    Google Scholar 

  8. Zhang, H., Li, C.M., Wei, W.: Combining adaptive noise and look-ahead in local search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal of Classification 2, 7–28 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eén, N., Sörensson, N.: Software, http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

  11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Grass Phylogeny Working Group. Phylogeny and subfamilial classification of the grasses (poaceae). Annals of the Missouri Botanical Garden 88(3), 373–457 (2001)

    Google Scholar 

  13. Hallett, M.T., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: ACM (ed.) Proceedings of the Fifth Annual International Conference on Computational Molecular Biology (RECOMB 2001), pp. 149–156. ACM, New York (2001)

    Google Scholar 

  14. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Applied Mathematics 71, 153–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heule, M.J.H., van Maaren, H.: March dl: Adding adaptive heuristics and a new branching strategy. Journal on Satisfiability, Boolean Modeling and Computation 2, 47–59 (2006)

    MATH  Google Scholar 

  16. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2), 254–267 (2006)

    Article  Google Scholar 

  17. Lynce, I., Marques Silva, J.P.: Efficient haplotype inference with boolean satisfiability. In: Proceedings of National Conference on Artificial Intelligence (AAAI) (2006)

    Google Scholar 

  18. Moret, B., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: Modeling, reconstructibility and accuracy. IEEE Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)

    Article  Google Scholar 

  19. Munzner, T., Guimbrètiere, F., Tasiran, S., Zhang, L., Zhou, Y.: TreeJuxtaposer: Scalable tree comparison using Focus+Context with guaranteed visibility. In: SIGGRAPH 2003 Proceedings, published as special issue of Transactions on Graphics, pp. 453–462 (2003)

    Google Scholar 

  20. Nakhleh, L., Ruths, D., Wang, L.-S.: RIATA-HGT: A fast and accurate heuristic for reconstructing horizontal gene transfer. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 84–93. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: Fastdnaml: A tool for construction of phylogenetic trees of dna sequences using maximum likelihood. Comput. Appl. Biosci. 10, 41–48 (1994)

    Google Scholar 

  22. Sanderson, M.J.: r8s; inferring absolute rates of evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003)

    Article  Google Scholar 

  23. Schmidt, H.A.: Phylogenetic trees from large datasets. PhD thesis, Heinrich-Heine-Universitat, Dusseldorf (2003)

    Google Scholar 

  24. Selman, B., Kautz, H.A., Cohen, B.: Software, http://www.cs.rochester.edu/u/kautz/walksat/

  25. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In: Trick, M., Johnson, D.S. (eds.) Proceedings of the Second DIMACS Challange on Cliques, Coloring, and Satisfiability, Providence RI (1993)

    Google Scholar 

  26. Semple, C.: Hybridization networks. New Mathematical Models for Evolution. Oxford University Press, Oxford (2007)

    Google Scholar 

  27. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25(2), 190–196 (2009)

    Article  Google Scholar 

  29. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla:portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonet, M.L., John, K.S. (2009). Efficiently Calculating Evolutionary Tree Measures Using SAT. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02777-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02776-5

  • Online ISBN: 978-3-642-02777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics