Abstract
Search restarts have shown great potential in speeding up SAT solvers based on the DPLL procedure. However, most restart policies presented so far do not take the problem structure into account. In this paper we present several new problem-sensitive restart heuristics. They all observe different search parameters like conflict level or backtrack level over time and, based on their development, decide whether to perform a restart or not. We also present a Java tool to visualize these search parameters on a given SAT instance over time in order to analyze existing heuristics and develop new one.
This work was supported in part by the “Concept for the Future” of Karlsruhe Institute of Technology within the framework of the German Excellence Initiative.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfiability algorithms to scheduling problems. In: AAAI (1994)
Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world SAT instances. In: AAAI/IAAI (1997)
Marques Silva, J.P., Sakallah, K.A.: GRASP – a new search algorithm for satisfiability. In: ICCAD (1996)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: DAC (2001)
Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)
Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomization. In: AAAI/IAAI (1998)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Walsh, T.: Search in a small world. In: IJCAI (1996)
Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 47(4) (1993)
Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: AAAI/IAAI (2002)
Wei, W., Li, C.M., Zhang, H.: A switching criterion for intensification and diversification in local search for SAT. J. Satisfiability, Boolean Modeling and Comput. 4, 219–237 (2008)
Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)
McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
Huang, J.: The effect of restarts on the efficiency of clause learning. In: IJCAI (2007)
Kautz, H.A., Horvitz, E., Ruan, Y., Gomes, C.P., Selman, B.: Dynamic restart policies. In: AAAI/IAAI (2002)
Haim, S., Walsh, T.: Online estimation of SAT solving runtime. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 133–138. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sinz, C., Iser, M. (2009). Problem-Sensitive Restart Heuristics for the DPLL Procedure. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-02777-2_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02776-5
Online ISBN: 978-3-642-02777-2
eBook Packages: Computer ScienceComputer Science (R0)