Skip to main content

(1,2)-QSAT: A Good Candidate for Understanding Phase Transitions Mechanisms

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2009 (SAT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5584))

Abstract

We explore random Boolean quantified CNF formulas of the form ∀ X ∃ Y ϕ(X,Y), where X has \(m=\lfloor \alpha \log n\rfloor\) variables (α> 0), Y has n variables and each clause in ϕ has one literal from X and two from Y. These (1,2)-QCNF-formulas, which can be seen as quantified extended 2-CNF formulas, were introduced in SAT’08. It was proved that the threshold phenomenon associated to the satisfiability of such random formulas, (1,2)-QSAT, is controlled by the ratio c between the number of clauses and the number n of existential variables. In this paper, we prove that the threshold is sharp. For any value of α, we give the exact location of the associated critical ratio, a(α). At this ratio, our study highlights the sudden emergence of unsatisfiable formulas with a very specific shape. From the experimental point of view (1,2)-QSAT is challenging. Indeed, while for small values of m the critical ratio can be observed experimentally, it is not anymore the case for bigger values of m. For small values of m we give precise numerical estimates of the probability of satisfiability for critical (1,2)-QCNF-formulas. These experiments give evidence that the asymptotical regime is difficult to reach and provide some indication on the behavior of random instances. Moreover, experiments show that the computational effort, which is increasing with m, is maximized within the phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollobás, B., Borgs, C., Chayes, J.T., Kim, J.H., Wilson, D.B.: The scaling window of the 2-SAT transition. Random Structures and Algorithms 18(3), 201–256 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Creignou, N., Daudé, H., Egly, U., Rossignol, R.: New results on the phase transition for random quantified Boolean formulas. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 34–47. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (FOCS 1992), pp. 620–627 (1992)

    Google Scholar 

  5. de la Fernandez Vega, W.: On random 2-SAT (manuscript, 1992)

    Google Scholar 

  6. Deroulers, C., Monasson, R.: Criticality and universality in the unit-propagation search rule. Eur. Phys. J. B 49, 339–369 (2006)

    Article  Google Scholar 

  7. Flögel, A., Karpinski, M., Kleine Büning, H.: Subclasses of quantified Boolean formulas. In: Proceedings of the 4th Workshop on Computer Science Logic (CSL 1990), pp. 145–155 (1990)

    Google Scholar 

  8. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE: A system for deciding quantified Boolean formulas satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 364–369. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Goerdt, A.: A threshold for unsatisfiability. Journal of of Computer and System Sciences 53(3), 469–486 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  11. Janson, S., Luczack, T., Rucinski, A.: Random graphs. John Wiley, New York (2000)

    Book  Google Scholar 

  12. Selman, B., Mitchell, D., Levesque, H.J.: Generating hard satisfiability problems. Artificial Intelligence 81(1-2), 17–29 (1996)

    Article  MathSciNet  Google Scholar 

  13. Temme, N.M.: Asymptotic estimates of Stirling numbers. Stud. appl. Math. 89, 223–243 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wilson, D.B.: On the critical exponents of random k-SAT. Random Structures and Algorithms 21(2), 182–195 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Creignou, N., Daudé, H., Egly, U., Rossignol, R. (2009). (1,2)-QSAT: A Good Candidate for Understanding Phase Transitions Mechanisms. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02777-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02776-5

  • Online ISBN: 978-3-642-02777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics