Skip to main content

An FPTAS for the Minimum Total Weighted Tardiness Problem with a Fixed Number of Distinct Due Dates

  • Conference paper
Computing and Combinatorics (COCOON 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5609))

Included in the following conference series:

Abstract

Given a sequencing of jobs on a single machine, each one with a weight, processing time, and a due date, the tardiness of a job is the time needed for its completion beyond its due date. We present an FPTAS for the basic scheduling problem of minimizing the total weighted tardiness when the number of distinct due dates is fixed. Previously, an FPTAS was known only for the case where all jobs have a common due date.

Full version at http://www.cas.mcmaster.ca/~gk/papers/tardiness_fixed.pdf

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdul-Razaq, T.S., Potts, C.N., Van Wassenhove, L.N.: A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics 26, 235–253 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, T.C.E., Ng, C.T., Yuan, J.J., Liu, Z.H.: Single machine scheduling to minimize total weighted tardiness. Eur. J. Oper. Res. 165, 423–443 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Du, J., Leung, J.Y.-T.: Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research 15, 483–495 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kellerer, H., Strusevich, V.A.: A Fully Polynomial Approximation Scheme for the Single Machine Weighted Total Tardiness Problem With a Common Due Date. Theoretical Computer Science 369, 230–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kolliopoulos, S.G., Steiner, G.: Approximation Algorithms for Minimizing the Total Weighted Tardiness on a Single Machine. Theoretical Computer Science 355(3), 261–273 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lawler, E.L.: A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness. Ann. Discrete Math. 1, 331–342 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lawler, E.L.: A fully polynomial approximation scheme for the total tardiness problem. Operations Research Letters 1, 207–208 (1982)

    Article  MATH  Google Scholar 

  8. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. McNaughton, R.: Scheduling with due dates and loss functions. Management Sci. 6, 1–12 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sen, T., Sulek, J.M., Dileepan, P.: Static scheduling research to minimize weighted and unweighted tardiness: a state-of-the-art survey. Int. J. Production Econom. 83, 1–12 (2003)

    Article  Google Scholar 

  11. Yuan, J.: The NP-hardness of the single machine common due date weighted tardiness problem. Systems Sci. Math. Sci. 5, 328–333 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karakostas, G., Kolliopoulos, S.G., Wang, J. (2009). An FPTAS for the Minimum Total Weighted Tardiness Problem with a Fixed Number of Distinct Due Dates. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02882-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02881-6

  • Online ISBN: 978-3-642-02882-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics