Abstract
Given a planar graph G = (V,E), the planar biconnectivity augmentation problem (PBA) asks for an edge set E′ ⊆ V×V such that G + E′ is planar and biconnected. This problem is known to be \(\mathcal{NP}\)-hard in general; see [1]. We show that PBA is already \(\mathcal{NP}\)-hard if all cutvertices of G belong to a common biconnected component B *, and even remains \(\mathcal{NP}\)-hard if the SPQR-tree of B * (excluding Q-nodes) has a diameter of at most two. For the latter case, we present a new 5/3-approximation algorithm with runtime \({\mathcal{O}}(|V|^{2.5})\).
Though a 5/3-approximation of PBA has already been presented [12], we give a family of counter-examples showing that this algorithm cannot achieve an approximation ratio better than 2, thus the best known approximation ratio for PBA is 2.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kant, G., Bodlaender, H.L.: Planar graph augmentation problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 286–298. Springer, Heidelberg (1991)
Fialko, S., Mutzel, P.: A new approximation algorithm for the planar augmentation problem. In: Proc. SODA 1998, SIAM, pp. 260–269. SIAM, Philadelphia (1998)
Hsu, T.S., Ramachandran, V.: On finding a smallest augmentation to biconnect a graph. SIAM Journal on Computing 22(5), 889–912 (1993)
Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)
Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM Journal on Computing 2(3), 135–158 (1973)
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Computing 25, 956–997 (1996)
Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)
Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theoretical Computer Science 1(3), 237–267 (1976)
Zey, B.: Algorithms for planar graph augmentation. Master’s thesis, Dortmund University of Technology (2008), http://ls11-www.cs.uni-dortmund.de/people/gutweng/diploma_thesis_zey.pdf
Micali, S., Vazirani, V.V.: An O\((\sqrt{|V|}|{E}|)\) algorithm for finding maximum matching in general graphs. In: Proc. FOCS 1980, pp. 17–27. IEEE, Los Alamitos (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gutwenger, C., Mutzel, P., Zey, B. (2009). On the Hardness and Approximability of Planar Biconnectivity Augmentation. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-02882-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02881-6
Online ISBN: 978-3-642-02882-3
eBook Packages: Computer ScienceComputer Science (R0)