Abstract
We study the performances of Nash equilibria in isolation games, a class of competitive location games recently introduced in [14]. For all the cases in which the existence of Nash equilibria has been shown, we give tight or asymptotically tight bounds on the prices of anarchy and stability under the two classical social functions mostly investigated in the scientific literature, namely, the minimum utility per player and the sum of the players’ utilities. Moreover, we prove that the convergence to Nash equilibria is not guaranteed in some of the not yet analyzed cases.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahn, H.K., Cheng, S.W., Cheong, O., Golin, M.J., Oostrum, R.: Competitive facility location: the Voronoi game. Theoretical Computer Science 310(1-3), 457–467 (2004)
Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-Optimal Network Design with Selfish Agents. In: Proc. of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 511–520. ACM Press, New York (2003)
Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round Voronoi game. Discrete and Computational Geometry 31, 125–138 (2004)
Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer, Heidelberg (2007)
Eaton, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: Some new developments in the theory of spatial competition. Review of Economic Studies 42(129), 27–49 (1975)
Eiselt, H.A., Laporte, G., Thisse, J.F.: Competitive location models: A framework and bibliography. Transportation Science 27(1), 44–54 (1993)
Fekete, S.P., Meijer, H.: The one-round Voronoi game replayed. Computational Geometry: Theory and Applications 30, 81–94 (2005)
Hotelling, H.: Stability in competition. Computational Geometry: Theory and Applications 39(153), 41–57 (1929)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3) (1999)
Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)
Mavronicolas, M., Monien, B., Papadopoulou, V.G., Schoppmann, F.: Voronoi games on cycle graphs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 503–514. Springer, Heidelberg (2008)
Nash, J.: Equilibrium Points in n-Person Games. Proc. of the National Academy of Sciences 36, 48–49 (1950)
Teng, S.H.: Low Energy and Mutually Distant Sampling. Journal of Algorithms 30(1), 42–67 (1999)
Zhao, Y., Chen, W., Teng, S.H.: The Isolation Game: A Game of Distances. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 148–158. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bilò, V., Flammini, M., Monaco, G., Moscardelli, L. (2009). On the Performances of Nash Equilibria in Isolation Games. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-02882-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02881-6
Online ISBN: 978-3-642-02882-3
eBook Packages: Computer ScienceComputer Science (R0)