Skip to main content

On the Performances of Nash Equilibria in Isolation Games

  • Conference paper
Computing and Combinatorics (COCOON 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5609))

Included in the following conference series:

  • 1014 Accesses

Abstract

We study the performances of Nash equilibria in isolation games, a class of competitive location games recently introduced in [14]. For all the cases in which the existence of Nash equilibria has been shown, we give tight or asymptotically tight bounds on the prices of anarchy and stability under the two classical social functions mostly investigated in the scientific literature, namely, the minimum utility per player and the sum of the players’ utilities. Moreover, we prove that the convergence to Nash equilibria is not guaranteed in some of the not yet analyzed cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahn, H.K., Cheng, S.W., Cheong, O., Golin, M.J., Oostrum, R.: Competitive facility location: the Voronoi game. Theoretical Computer Science 310(1-3), 457–467 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-Optimal Network Design with Selfish Agents. In: Proc. of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 511–520. ACM Press, New York (2003)

    Google Scholar 

  3. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round Voronoi game. Discrete and Computational Geometry 31, 125–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Eaton, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: Some new developments in the theory of spatial competition. Review of Economic Studies 42(129), 27–49 (1975)

    Article  MATH  Google Scholar 

  6. Eiselt, H.A., Laporte, G., Thisse, J.F.: Competitive location models: A framework and bibliography. Transportation Science 27(1), 44–54 (1993)

    Article  MATH  Google Scholar 

  7. Fekete, S.P., Meijer, H.: The one-round Voronoi game replayed. Computational Geometry: Theory and Applications 30, 81–94 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hotelling, H.: Stability in competition. Computational Geometry: Theory and Applications 39(153), 41–57 (1929)

    Google Scholar 

  9. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3) (1999)

    Google Scholar 

  10. Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Mavronicolas, M., Monien, B., Papadopoulou, V.G., Schoppmann, F.: Voronoi games on cycle graphs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 503–514. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Nash, J.: Equilibrium Points in n-Person Games. Proc. of the National Academy of Sciences 36, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  13. Teng, S.H.: Low Energy and Mutually Distant Sampling. Journal of Algorithms 30(1), 42–67 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, Y., Chen, W., Teng, S.H.: The Isolation Game: A Game of Distances. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 148–158. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilò, V., Flammini, M., Monaco, G., Moscardelli, L. (2009). On the Performances of Nash Equilibria in Isolation Games. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02882-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02881-6

  • Online ISBN: 978-3-642-02882-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics