Skip to main content

Online Tree Node Assignment with Resource Augmentation

  • Conference paper
Computing and Combinatorics (COCOON 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5609))

Included in the following conference series:

Abstract

Given a complete binary tree of height h, the online tree node assignment problem is to serve a sequence of assignment/release requests, where an assignment request, with an integer parameter 0 ≤ i ≤ h, is served by assigning a (tree) node at level (or height) i and a release request is served by releasing a specified assigned node. The node assignments have to guarantee that no node is assigned to two assignment requests unreleased, and every leaf-to-root path of the tree contains at most one assigned node. With assigned node reassignments allowed, the target of the problem is to minimize the number of assignments/reassigments, i.e., the cost, to serve the whole sequence of requests. This online tree node assignment problem is fundamental to many applications, including OVSF code assignment in WCDMA networks, buddy memory allocation and hypercube subcube allocation.

Most of the previous results focus on how to achieve good performance when the same amount of resource is given to both the online and the optimal offline algorithms, i.e., one tree. In this paper, we focus on resource augmentation, where the online algorithm is allowed to use more trees than the optimal offline algorithm. By using different approaches, we give (1) a 1-competitive online algorithm, which uses (h + 1)/2 trees, and is optimal because (h + 1)/2 trees are required by any online algorithm to match the cost of the optimal offline algorithm with one tree; (2) a 2-competitive algorithm with 3h/8 + 2 trees; (3) an amortized (4/3 + α)-competitive algorithm with (11/4 + 4/(3α)) trees, for any α where 0 < α ≤ 4/3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brodal, G.S., Demaine, E.D., Munro, J.I.: Fast allocation and deallocation with an improved buddy system. Acta Inf. 41(4-5), 273–291 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chin, F.Y.L., Ting, H.F., Zhang, Y.: A constant-competitive algorithm for online OVSF code assignment. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 452–463. Springer, Heidelberg (2007)

    Google Scholar 

  3. Chin, F.Y.L., Ting, H.F., Zhang, Y.: Constant-Competitive Tree Node Assignment (manuscript)

    Google Scholar 

  4. Chin, F.Y.L., Zhang, Y., Zhu, H.: Online OVSF code assignment with resource augmentation. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 191–200. Springer, Heidelberg (2007)

    Google Scholar 

  5. Defoe, D.C., Cholleti, S.R., Cytron, R.: Upper bound for defragmenting buddy heaps. In: Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, pp. 222–229 (2005)

    Google Scholar 

  6. Dutt, S., Hayes, J.P.: Subcube allocation in hypercube computers. IEEE Trans. Computers 40(3), 341–352 (1991)

    Article  MathSciNet  Google Scholar 

  7. Erlebach, T., Jacob, R., Mihalák, M., Nunkesser, M., Szabó, G., Widmayer, P.: An algorithmic view on OVSF code assignment. Algorithmica 47(3), 269–298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Forišek, M., Katreniak, B., Katreniaková, J., Královič, R., Královič, R., Koutný, V., Pardubská, D., Plachetka, T., Rovan, B.: Online bandwidth allocation. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 546–557. Springer, Heidelberg (2007)

    Google Scholar 

  9. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Knowlton, K.C.: A fast storage allocator. Commun. ACM 8(10), 623–624 (1965)

    Article  MATH  Google Scholar 

  11. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. 1. Addison-Wesley, Reading (1975)

    Google Scholar 

  12. Li, X.-Y., Wan, P.-J.: Theoretically good distributed CDMA/OVSF code assignment for wireless ad hoc networks. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 126–135. Springer, Heidelberg (2005)

    Google Scholar 

  13. Minn, T., Siu, K.-Y.: Dynamic assignment of orthogonal variable-spreading-factor codes in W-CDMA. IEEE Journal on Selected Areas in Communications 18(8), 1429–1440 (2000)

    Article  Google Scholar 

  14. Miyazaki, S., Okamoto, K.: Improving the competitive ratio of the online OVSF code assignment problem. In: Proceedings of the 19th International Symposium on Algorithms and Computation (ISAAC), pp. 64–76 (2008)

    Google Scholar 

  15. Rouskas, A.N., Skoutas, D.N.: OVSF codes assignment and reassignment at the forward link of W-CDMA 3G systems. In: Proceedings of the 13th IEEE International Symposium on Peronal, Indoor and Mobile Radio Communications, vol. 5, pp. 2404–2408 (2002)

    Google Scholar 

  16. Erlebach, T., Jacob, R., Tomamichel, M.: Algorithmische Aspekte von OVSF Code Assignment mit Schwerpunkt auf Offline Code Assignment. Student thesis at ETH Zürich

    Google Scholar 

  17. Wan, P.-J., Li, X.-Y., Frieder, O.: OVSF-CDMA code assignment in wireless ad hoc networks. Algorithmica 49(4), 264–285 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, J.WT., Chin, F.Y.L., Ting, HF., Zhang, Y. (2009). Online Tree Node Assignment with Resource Augmentation. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02882-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02881-6

  • Online ISBN: 978-3-642-02882-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics