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Algorithm for Findingk-Vertex Out-trees and its Application to
k-Internal Out-branching Problem

Nathann Cohen∗ Fedor V. Fomin† Gregory Gutin‡ Eun Jung Kim‡

Saket Saurabh† Anders Yeo‡

Abstract

An out-treeT is an oriented tree with only one vertex of in-degree zero. A vertexx of T is internal
if its out-degree is positive. We design randomized and deterministic algorithms for deciding whether
an input digraph contains a given out-tree withk vertices. The algorithms are of runtimeO∗(5.704k) and
O∗(5.704k(1+o(1))), respectively. We apply the deterministic algorithm to obtain a deterministic algorithm
of runtimeO∗(ck), wherec is a constant, for deciding whether an input digraph contains a spanning
out-tree with at leastk internal vertices. This answers in affirmative a question of Gutin, Razgon and
Kim (Proc. AAIM’08).

1 Introduction

An out-tree is an oriented tree with only one vertex of in-degree zero called theroot. The k-Out-Tree
problem is the problem of deciding for a given parameterk, whether an input digraph contains a given
out-tree withk ≥ 2 vertices. In their seminal work on Color Coding Alon, Yuster, and Zwick [1] provided
fixed-parameter tractable (FPT) randomized and deterministic algorithms fork-Out-Tree. While Alon,
Yuster, and Zwick [1] only stated that their algorithms are of runtimeO(2O(k)n), however, it is easy to see
(see Appendix), that their randomized and deterministic algorithms are of complexity1 O∗((4e)k) andO∗(ck),
wherec ≥ 4e.

The main results of [1], however, were a new algorithmic approach called Color Coding and a ran-
domizedO∗((2e)k) algorithm for deciding whether a digraph contains a path with k vertices (thek-Path
problem). Chen et al. [4] and Kneis et al. [8] developed a modification of Color Coding, Divide-and-Color,
that allowed them to design a randomizedO∗(4k)-time algorithm fork-Path. Divide-and-Color in Kneis et
al. [8] (and essentially in Chen et al. [4]) is ‘symmetric’, i.e., both colors play similar role and the proba-
bility of coloring each vertex in one of the colors is 0.5. In this paper, we further develop Divide-and-Color
by making it asymmetric, i.e., the two colors play different roles and the probability of coloring each vertex
in one of the colors depends on the color. As a result, we refinethe result of Alon, Yuster, and Zwick by
obtaining randomized and deterministic algorithms fork-Out-Tree of runtimeO∗(5.7k) andO∗(5.7k+o(k))
respectively.

It is worth to mention here two recent related results onk-Path due to Koutis [9] and Williams [15]
based on an algebraic approach. Koutis [9] obtained a randomizedO∗(23k/2)-time algorithm fork-Path and
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Williams [15] extended his ideas resulting in a randomizedO∗(2k)-time algorithm fork-Path. While the
randomized algorithms based on Color Coding and Divide-and-Color are not difficult to derandomize, it
is not the case for the algorithms of Koutis [9] and Williams [15]. Thus, it is unknown whether there are
deterministic algorithms fork-Path of runtimeO∗(23k/2). Moreover, it is not clear whether the randomized
algorithms of Koutis [9] and Williams [15] can be extended tosolvek-Out-Tree.

While we believe that the study of fast algorithms fork-Out-Tree is a problem interesting on its own,
we provide an application of our deterministic algorithm. The vertices of an out-treeT of out-degree zero
(nonzero) areleaves(internal vertices) of T. An out-branchingof a digraphD is a spanning subgraph of
D which is an out-tree. The Minimum Leaf problem is to find an out-branching with the minimum number
of leaves in a given digraphD. This problem is of interest in database systems [6] and the Hamilton path
problem is its special case. Thus, in particular, Minimum Leaf is NP-hard. In this paper we will study the
following parameterized version of Minimum Leaf : given a digraphD and a parameterk, decide whether
D has an out-branching with at leastk internal vertices. This problem denotedk-Int-Out-Branching was
studied for symmetric digraphs (i.e., undirected graphs) by Prieto and Sloper [13, 14] and for all digraphs
by Gutin et al. [7]. Gutin et al. [7] obtained an algorithm of runtimeO∗(2O(k logk)) for k-Int-Out-Branching
and asked whether the problem admits an algorithm of runtimeO∗(2O(k)). Note that no such algorithm
has been known even for the case of symmetric digraphs [13, 14]. In this paper, we obtain anO∗(2O(k))-
time algorithm fork-Int-Out-Branching using our deterministic algorithm fork-Out-Tree and an out-tree
generation algorithm.

For a setX of vertices of a subgraphH of a digraphD, N+H(X) and N−H(X) denote the sets of out-
neighbors and in-neighbors of vertices ofX in H, respectively. Sometimes, when a set has a single element,
we will not distinguish between the set and its element. In particular, whenH is an out-tree andx is a vertex
of H which is not its root, the unique in-neighbor ofx is denoted byN−H(x). For an out-treeT, Leaf(T)
denotes the set of leaves inT and Int(T) = V(T) − Leaf(T) stands for the set of internal vertices ofT.

2 New Algorithms for k-Out-Tree

In this section, we introduce and analyze a new randomized algorithm for k-Out-Tree that uses Divide-
and-Color and several other ideas. We provide an analysis ofits complexity and a short discussion of its
derandomization. We omit proofs of several lemmas of this section. The proofs can be found in Appendix.

The following lemma is well known, see [5].

Lemma 2.1. Let T be an undirected tree and let w: V → R+ ∪ {0} be a weight function on its vertices.
There exists a vertex v∈ V(T) such that the weight of every subtree T′ of T − v is at most w(T)/2, where
w(T) =

∑

v∈V(T) w(v).

Consider a partitionn = n1+ · · ·+nq, wheren and allni are nonnegative integers and a bipartition (A, B)

of the set{1, . . . , q}. Let d(A, B) :=
∣

∣

∣

∣

∑

i∈A ni −
∑

i∈B ni

∣

∣

∣

∣

. Given a setQ = {1, . . . , q} with a nonnegative integer
weight ni for each elementi ∈ Q, we say that a bipartition (A, B) of Q is greedily optimalif d(A, B) does
not decrease by moving an element of one partite set into another. The following procedure describes how
to obtain a greedily optimal bipartition in timeO(q logq). For simplicity we write

∑

i∈A ni asn(A).

Algorithm 1 Bipartition (Q, {ni : i ∈ Q})
1: Let A := ∅, B := Q.
2: while n(A) < n(B) and there is an elementi ∈ B with 0 < ni < d(A, B) do
3: Choose such an elementi ∈ B with a largestni .
4: A := A∪ {i} andB := B− {i}.
5: end while
6: Return (A, B).
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Figure 1: An example: The given out-treeT is divided into two partsT[Uw] andT[Ub∪{v∗}] by the splitting
vertexv∗. The digraphD contains a copy ofT meeting the restrictions onL.

Lemma 2.2. Let Q be a set of size q with a nonnegative integer weight ni for each i∈ Q. The algorithm
Bipartition (Q, {ni : i ∈ Q}) finds a greedily optimal bipartition A∪ B = Q in time O(q logq).

This lemma is proved in Appendix. Now we describe a new randomized algorithm fork-Out-Tree.
Let D be a digraph and letT be an out-tree onk vertices. Let us specify a vertext ∈ V(T) and a vertex

w ∈ V(D). We call a copy ofT in D a T-isomorphictree. We say that aT-isomorphic treeTD in D is a
(t,w)-tree if w ∈ V(TD) plays the role oft.

In the following algorithmfind-tree, we have several arguments other than the natural argumentsT and
D. Two arguments are verticest andv of T, and the last argument is a pair consisting ofL ⊆ V(T) and
{Xu : u ∈ L}, whereXu ⊂ V(D) and Xu’s are pairwise disjoint. The argumentt indicates that we want
to return, at the end of the current procedure, the set of verticesXt such that there is a (t,w)-tree for every
w ∈ Xt. The fact thatXt , ∅ means two points : we have aT-isomorphic tree inD, and the informationXt

we have can be used to construct a larger tree which uses the currentT-isomorphic tree as a building block.
Here,Xt is a kind of ‘joint’.

The argumentsL ⊆ V(T) and{Xu : u ∈ L} form a set of information on the location inD of the vertices
playing the role ofu ∈ L obtained in the way we obtainedXt by a recursive call of the algorithm. LetTD be
a T-isomorphic tree; if for everyu ∈ L, TD is a (v,w)-tree for somew ∈ Xu andV(TD) ∩ Xu = {w}, we say
thatTD meets the restrictions on L. The algorithmfind-tree intends to find the setXt of vertices such that
for everyw ∈ Xt, there is a (t,w)-tree which meets the restrictions onL; for illustration, see Figure 1.

The basic strategy is as follows. We choose a pairTA andTB of subtrees ofT such thatV(TA)∪V(TB) =
V(T) andTA andTB share only one vertex, namelyv∗. We call suchv∗ asplitting vertex. We call recursively
two ‘find-tree’ procedures on subsets ofV(D) to ensure that the subtrees playing the role ofTA andTB do
not overlap. The first call (line 15) tries to findXv∗ and the second one (line 18), using the informationXv∗

delivered by the first call, tries to findXt. Heret is a vertex specified as an input for the algorithmfind-tree.
In the end, the current procedure will returnXt.

A splitting vertex can produce several subtrees, but there are many ways to divide them into two groups
(TA andTB). To make the algorithm more efficient, we try to obtain as ‘balanced’ a partition (TA andTB) as
possible. The algorithmtree-Bipartition is used to produce a pretty ‘balanced’ bipartition of the subtrees.
Moreover we introduce another argument to have a better complexity behavior. The argumentv is a vertex
which indicates whether there is a predetermined splittingvertex. Ifv = ∅, we do not have a predetermined
splitting vertex so we find one in the current procedure. Otherwise, we use the vertexv as a splitting vertex.

Let r be the root ofT. To decide whetherD contains a copy ofT, it suffices to runfind-tree(T,D, ∅, r, ∅, ∅).
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Algorithm 2 find-tree (T,D, v, t, L, {Xu : u ∈ L}), see Figure 1
1: if |V(T) \ L| ≥ 2 then
2: for all u ∈ V(T): Setw(u) := 0 if u ∈ L, w(u) := 1 otherwise.
3: if v = ∅ then Find v∗ ∈ V(T) such that the weight of every subtreeT′ of T − v∗ is at mostw(T)/2

(see Lemma 2.1)elsev∗ := v
4: (WH, BL):=tree-Bipartition(T, t, v∗ , L).
5: Uw :=

⋃

i∈WH V(Ti) ∪ {v∗}, Ub :=
⋃

i∈BL V(Ti).
6: for all u ∈ L ∩Uw: color all vertices ofXu in white.
7: for all u ∈ L ∩ (Ub \ {v∗}): color all vertices ofXu in black.
8: α := min{w(Uw)/w(T),w(Ub)/w(T)}.
9: if α2−3α+1 ≤ 0 (i.e.,α ≥ (3−

√
5)/2, see (1) and the definition ofα∗ afterwards)then vw := vb := ∅

10: else ifw(Uw) < w(Ub) then vw := ∅, vb := v∗ elsevw := v∗, vb := ∅.
11: Xt := ∅.
12: for i = 1 to

⌈

2.51
ααk(1−α)(1−α)k

⌉

do
13: Color the vertices ofV(D) −⋃

u∈L Xu in white or black such that for each vertex the probability to
be colored in white isα if w(Uw) ≤ w(Ub), and 1− α otherwise.

14: Let Vw (Vb) be the set of vertices ofD colored in white (black).
15: S :=find-tree(T[Uw],D[Vw], vw, v∗, L ∩Uw, {Xu : u ∈ L ∩ Uw})
16: if S , ∅ then
17: Xv∗ := S, L := L ∪ {v∗}.
18: S′ :=find-tree(T[Ub ∪ {v∗}],D[Vb ∪ S], vb, t, (L ∩ Ub), {Xu : u ∈ (L ∩ Ub)}).
19: Xt := Xt ∪ S′.
20: end if
21: end for
22: ReturnXt.
23: else{|V(T) \ L| ≤ 1}
24: if {z} = V(T) \ L then Xz := V(D) −⋃

u∈L Xu, L := L ∪ {z}.
25: Lo := {all leaf vertices ofT}.
26: while Lo

, L do
27: Choose a vertexz ∈ L \ Lo s.t. N+T (z) ⊆ L0.
28: Xz := Xz∩

⋂

u∈N+T (z) N−(Xu); Lo := Lo ∪ {z}.
29: end while
30: return Xt

31: end if

Lemma 2.3. During the performance of find-tree(T,D, ∅, r, ∅, ∅), the sets Xu, u ∈ L are pairwise disjoint.

Proof. We prove the claim inductively. For the initial call, trivially the setsXu, u ∈ L are pairwise disjoint
sinceL = ∅. Suppose that for a call find-tree(T,D, v, t, L, {Xu : u ∈ L}) the setsXv, v ∈ L are pairwise
disjoint. For the first subsequent call in line 15, the sets are obviously pairwise disjoint. Consider the
second subsequent call in line 18. Ifv∗ ∈ L before line 17, the claim is true sinceS returned by the first
subsequent call is contained inXv∗ . Otherwise, observe thatXu ⊆ Vb for all u ∈ L∩Ub and they are pairwise
disjoint. SinceXv∗ ∩ Vb = ∅, the setsXu for all u ∈ L ∩Ub together withXv∗ are pairwise disjoint. �

Lemma 2.4. Consider the algorithmtree-Bipartition and let(WH, BL) be a bipartition of{1, . . . , q} ob-
tained at the end of the algorithm. Then the partition Uw :=

⋃

i∈WH V(Ti) ∪ {v∗} and Ub :=
⋃

i∈BL V(Ti) of
V(T) has the the following property.
1) If v∗ = t, moving a component Ti from one partite set to the other does not decrease the difference
d(w(Uw),w(Ub)).
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Algorithm 3 tree-Bipartition (T, t, v∗, L)
1: T1, . . . ,Tq are the subtrees ofT − v∗. Q := {1, . . . , q}. w(Ti) := |V(Ti) \ L|, ∀i ∈ Q.
2: if v∗ = t then
3: (A, B):=Bipartition (Q, {ni := w(Ti) : i ∈ Q})
4: if w(A) ≤ w(B) then WH := A, BL := B. elseWH := B, BL := A.
5: else if t ∈ V(Tl) andw(Tl) − w(v∗) ≥ 0 then
6: (A, B):=Bipartition (Q, {ni := w(Ti) : i ∈ Q \ {l}} ∪ {nl := w(Tl) − w(v∗)}).
7: if l ∈ B then WH := A, BL := B. elseWH := B, BL := A.
8: else{t ∈ V(Tl) andw(Tl) − w(v∗) < 0}
9: (A, B):=Bipartition ((Q \ {l}) ∪ {v∗}, {ni := w(Ti) : i ∈ Q \ {l}} ∪ {nv∗ := w(v∗)}).

10: if v∗ ∈ A then WH := A− {v∗}, BL := B∪ {l}. elseWH := B− {v∗}, BL := A∪ {l}.
11: end if
12: return (WH, BL).

2) If v∗ , t, either exchanging v∗ and the component Tl or moving a component Ti , i , v∗, l from one partite
set to the other does not decrease the difference d(w(Uw),w(Ub)).

Proof. Let us consider the property 1). The bipartition (WH, BL) is determined in the first ‘if’ statement
in line 3 of tree-Bipartition . Then by Lemma 2.2 the bipartition (WH, BL) is greedily optimal, which is
equivalent to the statement of 1).

Let us consider the property 2). First suppose that the bipartition (WH, BL) is determined in the second
‘if’ statement in line 5 oftree-Bipartition . The exchange ofv∗ and the componentTl amounts to moving
the elementl in the algorithmBipartition . Since (WH, BL) is returned byBipartition and thus is a greedily
optimal bipartition ofQ, any move of an element in one partite set would not decrease the difference
d(WH, BL) and the statement of 2) holds in this case.

Secondly suppose that the bipartition (WH, BL) is determined in the third ‘if’ statement in line 8 of
tree-Bipartition . In this case we havew(Tl) = 0 and thus exchangingTl andv∗ and amounts to moving the
elementv∗ in the algorithmBipartition . By the same argument as above, any move of an element in one
partite set would not decrease the differenced(WH, BL) and again the statement of 2) holds. �

Consider the following equation:
α2 − 3α + 1 = 0 (1)

Let α∗ := (3−
√

5)/2 be one of its roots. In line 10 of the algorithmfind-tree, if α < α∗ we decide to pass
the present splitting vertexv∗ as a splitting vertex to the next recursive call which gets, as an argument, a
subtree with greater weight. Lemma 2.5 justifies this execution. It claims that ifα < α∗, then in the next
recursive call with a subtree of weight (1−α)w(T), we have a more balanced bipartition withv∗ as a splitting
vertex. Actually, the bipartition in the next step is good enough so as to compensate for the increase in the
running time incurred by the biased (‘α < α∗’) bipartition in the present step. We will show this later.

Lemma 2.5. Suppose that v∗ has been chosen to split T for the present call tofind-tree such that the weight
of every subtree of T− v∗ is at most w(T)/2 and that w(T) ≥ 5. Letα be defined as in line8 and assume
that α < α∗. Let {U1,U2} = {Uw,Ub} such that w(U2) ≥ w(U1) and let{T1,T2} = {T[Uw],T[Ub ∪ {v∗}]}
such that U1 ⊆ V(T1) and U2 ⊆ V(T2). Letα′ play the role ofα in the recursive call using the tree T2. In
this case the following holds:α′ ≥ (1− 2α)/(1− α) > α∗.

Proof. Let T1,T2,U1,U2, α, α
′ be defined as in the statement. Note thatα = w(U1)/w(T). Let d = w(U2)−

w(U1) and note thatw(U1) = (w(T) − d)/2 and that the following holds

1− 2α
1− α =

w(T) − 2w(U1)
w(T) − w(U1)

=
2d

w(T) + d
.

We now consider the following cases.
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Case 1. d= 0: In this caseα = 1/2 > α∗, a contradiction.
Case 2. d= 1: In this caseα∗ > α = w(U1)/(2w(U1) + 1), which implies thatw(U1) ≤ 1. Therefore

w(U2) ≤ 2 andw(T) ≤ 3, a contradiction.
Case 3. d≥ 2: LetC1,C2, . . . ,Cl denote the components inT−v∗ and without loss of generality assume

thatV(C1) ∪ V(C2) ∪ · · · ∪ V(Ca) = U2 andV(Ca+1) ∪ V(Ca+2) ∪ · · · ∪ V(Cl) = U1. Note that by Lemma
2.4 we must havew(Ci) ≥ d or w(Ci) = 0 for all i = 1, 2, . . . , l except possibly for one setC j (containingt),
which may havew(C j) = 1 (if w(v∗) = 1).

Let Cr be chosen such thatw(Cr) ≥ d, 1≤ r ≤ a andw(Cr) is minimum possible with these constraints.
We first consider the case whenw(Cr) > w(U2) − w(Cr). By the above (and the minimality ofV(Cr)) we
note thatw(U2) ≤ w(Cr )+ 1 (as eitherC j, which is defined above, orv∗ may belong toV(T2), but not both).
As w(U2) = (w(T)+d)/2 ≥ w(T)/2+1 we note thatw(Cr) ≥ w(T)/2+d/2−1. Asw(Cr) ≤ w(T)/2 (By the
statement in our theorem) this implies thatd = 2 andw(Cr) = w(T)/2 andw(U2) = w(Cr)+1. If U1 contains
at least two distinct components with weight at leastd thenw(U1) > w(U2), a contradiction. IfU1 contains
no component of weight at leastd thenw(U1) ≤ 1 andw(T) ≤ 4, a contradiction. SoU1 contains exactly
one component of weight at leastd. By the minimality ofw(Cr) we note thatw(U1) ≥ w(Cr ) = w(U2) − 1,
a contradiction tod ≥ 2.

Therefore we can assume thatw(Cr) ≤ w(U2) − w(Cr), which implies the following (the last equality is
proved above)

α′ ≥ w(Cr)
w(U2)

≥ d
(w(T) + d)/2

=
1− 2α
1− α .

As α < α∗, we note thatα′ ≥ (1− 2α)/(1− α) > (1− 2α∗)/(1− α∗) = α∗. �

For the selection of the splitting vertexv∗ we have two criteria in the algorithmfind-tree: (i) ‘found’
criterion: the vertex is found so that the weight of every subtreeT′ of T − v∗ is at mostw(T)/2. (ii) ‘taken-
over’ criterion: the vertex is passed on to the present step as the argumentv by the previous step of the
algorithm. The following statement is an easy consequence of Lemma 2.5.

Corollary 2.6. Suppose that w(T) ≥ 5. If v∗ is selected with ‘taken-over’ criterion, thenα > α∗.

Proof. For the initial call find-tree(T,D, ∅, r, ∅, ∅) we havev = ∅ and thus, the splitting vertexv∗ is selected
with the ‘found’ criterion. We will prove the claim by induction. Consider the first vertexv∗ selected with
then ‘taken-over’ criterion during the performance of the algorithm. Then in the previous step, the splitting
vertex was selected with ‘found’ criterion and thus in the present step we haveα > α∗ by Lemma 2.5.

Now consider a vertexv∗ selected with the ‘taken-over’ criterion. Then in the previous step, the splitting
vertex was selected with the ‘found’ criterion since otherwise, by the induction hypothesis we haveα > α∗ in
the previous step, and∅ has been passed on as the argumentv for the present step. This is a contradiction.�

Due to Corollary 2.6 the vertexv∗ selected in line 3 of the algorithmfind-tree functions properly as a
splitting vertex. In other words, we have more than one subtree ofT − v∗ in line 4 with positive weights.

Lemma 2.7. If w(T) ≥ 2, then for each of Uw and Ub found in line 5 of byfind-tree we have w(Uw) > 0
and w(Ub) > 0.

Proof. For the sake of contradiction suppose that one ofw(Uw) andw(Ub) is zero. Let us assumew(Uw) = 0
andw(Ub) = w(T). If v∗ is selected with ‘found’ criteria, each component inT[Ub] has a weight at most
w(T)/2 andT[Ub] contains at least two components of positive weights. Thenwe can move one component
with a positive weight fromUb to Uw which will reduce the differenced(Uw,Ub), a contradiction. The same
argument applies whenw(Uw) = w(T) andw(Ub) = 0.

Consider the case whenv∗ is selected with “taken-over” criteria. There are three possibilities.
Case 1. w(T) ≥ 5: In this case we obtain a contradiction with Corollary 2.6.
Case 2. w(T) = 4: In the previous step usingT0, whereT ⊆ T0, the splitting vertexv∗ was selected with

“found” criteria. Then by the argument in the first paragraph, we havew(T0) ≥ 5. A contradiction follows
from Lemma 2.5.
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Case 3. 2 ≤ w(T) ≤ 3: First suppose thatw(v∗) = 0. Note thatT[Uw] − v∗ or T[Ub] contains a
component of weightw(T) since otherwise we can move a component with a positive weight from one
partite set to the other and reduced(Uw,Ub). Considering the previous step usingT0, whereT ⊆ T0, the
out-treeT is the larger ofT0

w andT0
b. We pass the splitting vertexv∗ to the larger of the two only when

α > α∗. So whenw(T) = 3, we have 3> (1− α∗)w(T0) and thusw(T0) ≤ 4, and whenw(T) = 2 we have
2 > (1− α∗)w(T0) and thusw(T0) ≤ 3. In either case, however,T0− v∗ contains a component with a weight
greater thanw(T0)/2, contradicting to the choice ofv∗ in the previous step (Recall thatv∗ is selected with
‘found’ criteria in the previous step usingT0).

Secondly suppose that thatw(v∗) = 1. Thenw(Uw) = w(T) andw(Ub) = 0. We can reduce the difference
d(Uw,Ub) by moving the component with a positive weight fromUw to Ub, a contradiction.

Therefore for each ofUw andUb found in line 5 of byfind-tree we havew(Uw) > 0 andw(Ub) > 0. �

Lemma 2.8. Given a digraph D, an out-tree T and a specified vertex t∈ V(T), consider the set Xt (in line
22) returned by the algorithm find-tree(T,D, v, t, L, {Xu : u ∈ L}). If w ∈ Xt then D contains a(t,w)-tree
that meets the restrictions on L. Conversely, if D contains a(t,w)-tree for a vertex w∈ V(D) that meets the
restrictions on L, then Xt contains w with probability larger than1− 1/e> 0.6321.

Proof. Lemma 2.7 guarantees that the splitting vertexv∗ selected at any recursive call offind-tree really
‘splits’ the input out-treeT into two nontrivial parts, unlessw(T) ≤ 1.

First we show that ifw ∈ Xt thenD contains a (t,w)-tree for a vertexw ∈ V(D) that meets the restrictions
onL. When|V(T)\L| ≤ 1, using Lemma 2.3 it is straightforward to check from the algorithm that the claim
holds. Assume that the claim is true for all subsequent callsto find-tree. Sincew ∈ S′ for someS′ returned
by a call in line 18, the subgraphD[Vb∪ Xv∗ ] contains aT[Ub∪ {v∗}]-isomorphic (t,w)-treeTb

D meeting the
restrictions on (L ∩ Ub) ∪ {v∗} by induction hypothesis. Moreover,Xv∗ , ∅ whenS′ ∋ w is returned and
this implies that there is a vertexu ∈ Xv∗ such thatTb

D is a (v∗, u)-tree. Sinceu ∈ Xv∗ , induction hypothesis
implies that the subgraphD[Vw] contains aT[Uw]-isomorphic (v∗, u)-tree, sayTw

D.
Consider the subgraphTD := Tw

D ∪ Tb
D. To show thatTD is aT-isomorphic (t,w)-tree in D, it suffices

to show thatV(Tw
D) ∩ V(Tb

D) = {u}. Indeed,V(Tw
D) ⊆ Vw, V(Tb

D) ⊆ Vb ∪ Xv∗ andVw ∩ Vb = ∅. Thus if two
treesTw

D andTb
D share vertices other thanu, these common vertices should belong toXv∗ . SinceTb

D meets
the restrictions on (L ∩Ub) ∪ {v∗}, we haveXv∗ ∩ V(Tb

D) = {u}. Henceu is the only vertex that two treesTw
D

andTb
D have in common. We know thatu plays the role ofv∗ in both trees. Therefore we conclude thatTD

is T-isomorphic, and sincew plays the role oft, it is a (t,w)-tree. ObviouslyTD meets the restrictions onL.
Secondly, we shall show that ifD contains a (t,w)-tree for a vertexw ∈ V(D) that meets the restrictions

on L, thenXt containsw with probability larger than 1− 1/e> 0.6321. When|V(T) \ L| ≤ 1, the algorithm
find-tree is deterministic and returnsXt which is exactly the set of all verticesw for which there exists a
(t,w)-tree meeting the restrictions onL. Hence the claim holds for the base case, and we may assume that
the claim is true for all subsequent calls tofind-tree.

Suppose that there is a (t,w)-treeTD meeting the restrictions onL and that this is a (v∗,w′)-tree, that is,
the vertexw′ plays the role ofv∗. Then the vertices ofTD corresponding toUw, sayTw

D, are colored white and
those ofTD corresponding toUb, sayTb

D, are colored black as intended with probability≥ (αα(1− α)1−α)k.
When we hit the right coloring forT, the digraphD[Vw] contains the subtreeTw

D of TD which is T[Uw]-
isomorphic and which is a (v∗,w′)-tree. By induction hypothesis, the setS obtained in line 15 containsw′

with probability larger than 1− 1/e. Note thatTw
D meets the restrictions onL ∩ Uw.

If w′ ∈ S, the restrictions delivered onto the subsequent call forfind-tree in line 17 containsw′. Since
TD meets the restrictions onL confined toUb − v∗ and it is a (v∗,w′)-tree withw′ ∈ S = Xv∗ , the subtreeTb

D
of TD which isT[Ub ∪ {v∗}]-isomorphic meets all the restrictions onL. Hence by induction hypothesis, the
setS′ returned in line 18 containsw with probability larger than 1− 1/e.

The probabilityρ thatS′, returned byfind-tree in line 18 at an iteration of the loop, containsw is, thus,

ρ > (αα(1− α)1−α)k × (1− 1/e)2 > 0.3995(αα(1− α)1−α)k.
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After looping⌈(0.3995(αα(1− α)1−α)k)−1⌉ times in line 12, the probability thatXt containsw is at least

1− (1− ρ)
1

0.3995(αα(1−α)1−α)k > 1− (1− 0.3995(αα(1− α)1−α)k)
1

0.3995(αα(1−α)1−α)k > 1− 1
e
.

Observe that the probabilityρ does not depend onα and the probability of coloring a vertex white/black. �

The complexity of Algorithmfind-tree is analyzed in the following theorem. Its proof given in Ap-
pendix is based on Lemmas 2.7 and 2.5.

Theorem 2.9. Algorithm find-tree has running time O(n2kρCk), where w(T) = k and |V(D)| = n, and C
andρ are defined and bounded as follows:

C =

(

1

α∗α∗(1− α∗)1−α∗

) 1
α∗

, ρ =
ln(1/6)

ln(1− α∗) , ρ ≤ 3.724, and C≤ 5.704.

Derandomization of the algorithmfind-tree can be carried out using the general method presented
by Chen et al. [4] and based on the construction of (n, k)-universal sets studied in [10] (for details, see
Appendix). As a result, we obtain the following:

Theorem 2.10. There is a O(n2Ck+o(k)) time deterministic algorithm that solves the k-Out-Tree problem,
where C≤ 5.704.

3 Algorithm for k-Int-Out-Branching

A k-internal out-treeis an out-tree with at leastk internal vertices. We call ak-internal out-treeminimal if
none of its proper subtrees is ak-internal out-tree, orminimal k-treein short. The Rooted Minimal k-Tree
problem is as follows: given a digraphD, a vertexu of D and a minimalk-treeT, wherek is a parameter,
decide whetherD contains an out-tree rooted atu and isomorphic toT. Recall thatk-Int-Out-Branching is
the following problem: given a digraphD and a parameterk, decide whetherD contains an out-branching
with at leastk internal vertices. Finally, thek-Int-Out-Tree problem is stated as follows: given a digraphD
and a parameterk, decide whetherD contains an out-tree with at leastk internal vertices.

Lemma 3.1. Let T be a k-internal out-tree. Then T is minimal if and only if|Int(T)| = k and every leaf
u ∈ Leaf(T) is the only child of its parent N−(u).

Proof. Assume thatT is minimal. It cannot have more thank internal vertices, because otherwise by
removing any of its leaves, we obtain a subtree ofT with at leastk internal vertices. Thus|Int(T)| = k. If
there are sibling leavesu andw, then removing one of them provides a subtree ofT with |Int(T)| internal
vertices.

Now, assume that|Int(T)| = k and every leafu ∈ Leaf(T) is the only child of its parentN−(u). Observe
that every subtree ofT can be obtained fromT by deleting a leaf ofT, a leaf in the resulting out-tree, etc.
However, removing any leafv from T decreases the number of internal vertices, and thus createssubtrees
with at mostk− 1 internal vertices. Thus,T is minimal.

�

In fact, Lemma 3.1 can be used to generate all non-isomorphicminimalk-trees. First, build an (arbitrary)
out-treeT0 with k vertices. Then extendT0 by adding a vertexx′ for each leafx ∈ Leaf(T0) with an arc
(x, x′). The resulting out-treeT′ satisfies the properties of Lemma 3.1. Conversely, by Lemma 3.1, any
minimal k-tree can be constructed in this way.

Generating Minimal k-Tree (GMT) Procedure
a. Generate ak-vertex out-treeT0 and a setT′ := T0.
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b. For each leafx ∈ Leaf(T′), add a new vertexx′ and an arc (x, x′) to T′.

Due to the following simple observation, to solvek-Int-Out-Tree for a digraphD it suffices to solve
Rooted Minimal k-Tree for each vertexu ∈ V(D) and each minimalk-treeT rooted atu.

Lemma 3.2. Any k-internal out-tree rooted at r contains a minimal k-tree rooted at r as a subdigraph.

Similarly, the next two lemmas show that to solvek-Out-Branching for a digraphD it suffices to solve
RootedMinimal k-Tree for each vertexu ∈ S and each minimalk-treeT rooted atu, whereS is the unique
strong connectivity component ofD without incoming arcs.

Lemma 3.3. [2] A digraph D has an out-branching rooted at vertex r∈ V(D) if and only if D has a unique
strong connectivity component S of D without incoming arcs and r ∈ S. One can check whether D has a
unique strong connectivity component and find one, if it exists, in time O(m+ n), where n and m are the
number of vertices and arcs in D, respectively.

Lemma 3.4. Suppose a given digraph D with n vertices and m arcs has an out-branching rooted at vertex
r. Then any minimal k-tree rooted at r can be extended to a k-internal out-branching rooted at r in time
O(m+ n).

Proof. Let T be ak-internal out-tree rooted atr. If T is spanning, there is nothing to prove. Otherwise,
chooseu ∈ V(D) \ V(T). Since there is an out-branching rooted atr, there is a directed pathP from r to
u. This implies that wheneverV(D) \ V(T) , ∅, there is an arc (v,w) with v ∈ V(T) andw ∈ V(D) \ V(T).
By adding the vertexw and the arc (v,w) to T, we obtain ak-internal out-tree and the number of verticesT
spans is strictly increased by this operation. Using breadth-first search starting at some vertex ofV(T), we
can extendT into ak-internal out-branching inO(n+m) time. �

Sincek-Int-Out-Tree andk-Int-Out-Branching can be solved similarly, we will only deal with thek-
Int-Out-Branching problem. We will assume that our input digraph contains a unique strong connectivity
componentS. Our algorithm calledIOBA for solving k-Int-Out-Branching for a digraphD runs in two
stages. In the first stage, we generateall minimal k-trees. We use the GMT procedure described above to
achieve this. At the second stage, for eachu ∈ S and each minimalk-treeT, we check whetherD contains
an out-tree rooted atu and isomorphic toT using our algorithm from the previous section. We return TRUE
if and only if we succeed in finding an out-treeH of D rooted atu ∈ S which is isomorphic to a minimal
k-tree.

In the literature, mainly rooted (undirected) trees and notout-trees are studied. However, every rooted
tree can be made an out-tree by orienting every edge away fromthe root and every out-tree can be made a
rooted tree by disregarding all orientations. Thus, rootedtrees and out-trees are equivalent and we can use
results obtained for rooted trees for out-trees.

Otter [12] showed that the number of non-isomorphic out-trees onk vertices istk = O∗(2.95k). We can
generate all non-isomorphic rooted trees onk vertices using the algorithm of Beyer and Hedetniemi [3] of
runtimeO(tk). Using the GMT procedure we generate all minimalk-trees. We see that the first stage of
IOBA can be completed in timeO∗(2.95k).

In the second stage of IOBA, we try to find a copy of a minimalk-tree T in D using our algorithm
from the previous section. The running time of our algorithmis O∗(5.704k). Since the number of vertices
of T is bounded from above by 2k − 1, the overall running time for the second stage of the algorithm is
O∗(2.95k ·5.7042k−1). Thus, the overall time complexity of the algorithm isO∗(2.95k ·5.7042k−1) = O∗(96k).

We can reduce the complexity with a more refined analysis of the algorithm. The major contribution to
the large constant 96 in the above simple analysis comes fromthe running time of our algorithm from the
previous section. There we use the upper bound on the number of vertices in a minimalk-tree. Most of
the minimalk-trees have less thank − 1 leaves, which implies that the upper bound 2k − 1 on the order of
a minimalk-tree is too big for the majority of the minimalk-trees. LetT(k) be the running time of IOBA.
Then we have
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T(k) = O∗
















∑

k+1≤k′≤2k−1

(# of minimalk− trees onk′ vertices)× (5.704k′ )

















(2)

A minimal k-treeT′ onk′ vertices hask′−k leaves, and thus the out-treeT0 from whichT′ is constructed
hask vertices of whichk′ − k are leaves. Hence the number of minimalk-trees onk′ vertices is the same
as the number of non-isomorphic out-trees onk vertices withk′ − k leaves. Here an interesting counting
problem arises. Letg(k, l) be the number of non-isomorphic out-trees onk vertices withl leaves. Enumerate
g(k, l). To our knowledge, such a function has not been studied yet.Leaving it as a challenging open
question, here we give an upper bound ong(k, l) and use it for a better analysis ofT(k). In particular we are
interested in the case whenl ≥ k/2.

Consider an out-treeT0 on k ≥ 3 vertices which hasαk internal vertices and (1− α)k leaves. We want
to obtain an upper bound on the number of such non-isomorphicout-treesT0. Let Tc be the subtree ofT0

obtained after deleting all its leaves and suppose thatTc hasβk leaves. Assume thatα ≤ 1/2 and notice that
αk andβk are integers. Clearlyβ < α.

Each out-treeT0 with (1 − α)k leaves can be obtained by appending (1− α)k leaves toTc so that each
of the vertices in Leaf(Tc) has at least one leaf appended to it. Imagine that we haveβk = |Leaf(Tc)| and
αk− βk = |Int(Tc)| distinct boxes. Then what we are looking for is the number of ways to put (1− α)k balls
into the boxes so that each of the firstβk boxes is nonempty. Again this is equivalent to putting (1− α− β)k
balls intoαk distinct boxes. It is an easy exercise to see that this numberequals

(

k−βk−1
αk−1

)

.

Note that the above number does not give the exact value for the non-isomorphic out-trees onk vertices
with (1 − α)k leaves. This is because we treat an out-treeTc as a labeled one, which may lead to us to
distinguishing two assignments of balls even though the twocorresponding out-treesT0’s are isomorphic
to each other.

A minimal k-tree obtained fromT0 has (1−α)k leaves and thus (2−α)k vertices. With the upper bound
O∗(2.95αk) on the number ofTc’s by [12], by (2) we have the following:

T(k) = O∗



















∑

α≤1/2

∑

β<α

2.95αk
(

k− βk − 1
αk− 1

)

(5.704)(2−α)k



















+O∗
















∑

α>1/2

2.95αk(5.704)(2−α)k
















= O∗
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α≤1/2

∑

β<α

2.95αk
(

k
αk

)

(5.704)(2−α)k


















+O∗
(

2.95k(5.704)3k/2
)

= O∗
















∑

α≤1/2

(

2.95α
1

αα(1− α)1−α (5.704)(2−α)
)k

















+O∗(40.2k)

The term in the sum overα ≤ 1/2 above is maximized whenα = 2.95
2.95+5.704, which yieldsT(k) = O∗(49.4k).

Thus, we conclude with the following theorem.

Theorem 3.5. k-Int-Out-Branching is solvable in time O∗(49.4k).

4 Conclusion

In this paper we refine the approach of Chen et al. [4] and Rossmanith [8] based on Divide-and-Color
technique. Our technique is based on a more complicated coloring and within this technique we refined the
result of Alon et al. [1] for thek-Out-Tree problem. It is interesting to see if this technique can be used to
obtain faster algorithms for other parameterized problems.

As a byproduct of our work, we obtained the firstO∗(2O(k)) for k-Int-Out-Branching. We used the clas-
sical result of Otter [12] that the number of non-isomorphictrees onk vertices isO∗(2.95k). An interesting
combinatorial problem is to refine this bound for trees having ⌊αk⌋ leaves for someα < 1.

10



References

[1] N. Alon, R. Yuster and U. Zwick, Color-coding.Journal of the ACM42 (1995), 844–856.

[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Apllications, 2nd Ed., Springer-
Verlag, London, 2008.

[3] T. Beyer and S.M. Hedetniemi, Constant time generation of rooted trees.SIAM J. Computing9 (1980),
706–712.

[4] J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved Algorithms for Path, Matching, and Packing Prob-
lems, Proc. 18th ACM-SIAM Symposium on Discrete Algorithms(SODA 2007), pp. 298-307, 2007.

[5] F. R. K. Chung, Separator theorems and their applications, In Paths, Flows, and VLSI-Layout (Bonn,
1988), Springer-Verlag, Berlin, pp. 17–34, 1990.

[6] A. Demers and A. Downing, Minimum leaf spanning tree. US Patent no. 6,105,018, August 2000.

[7] G. Gutin, I. Razgon and E.J. Kim, Minimum Leaf Out-Branching Problems.Proc. AAIM’08, Lecture
Notes Comput. Sci. 5034 (2008), 235–246.

[8] J. Kneis, D. Molle, S. Richter, and P. Rossmanith, Divide-and-color.Proc. WG’06, Lecture Notes
Comput. Sci. 4271 (2006), 58–67.

[9] I. Koutis, Faster algebraic algorithms for path and packing problems.Proc. ICALP’08, Lecture Notes
Comput. Sci. 5125 (2008), 575–586.

[10] M. Naor, L. J. Schulman and A. Srinivasan, Splitters andNear-Optimal Derandomization, Proc. 17th
Ann. Symp. Found. Comput. Sci. (1995), 182–193

[11] A. Nilli, Perfect hashing and probability,Combinatorics Prob. Comput.3 (1994), 407–409.

[12] R. Otter, The Number of Trees. Ann. Math. 49 (1948), 583–599.

[13] E. Prieto and C. Sloper, Either/Or: Using Vertex Cover Structure in desigining FPT-algorithms - The
Case ofk-Internal Spanning Tree,Proc. WADS’2003, Lect. Notes Comput.Sci. 2748 (2003), 465–483.

[14] E. Prieto and C. Sloper, Reducing To Independent Set Structure - The Case ofk-Internal Spanning
Tree,Nordic Journal of Computing15 (2005), 308–318.

[15] R. Williams, Finding a path of lengthk in O∗(2k) time. To appear in Inform. Proc. Letters.

5 Appendix

5.1 Algorithm of Alon, Yuster and Zwick

Let c : V(D) → {1, . . . , k} be a vertexk-coloring of a digraphD and letT be ak-vertex out-tree contained
in D (as a subgraph). ThenV(T) andT arecolorful if no pair of vertices ofT are of the same color.

The following algorithm of [1] verifies whetherD contains a colorful out-treeH such thatH is isomor-
phic toT, when a coloringc : V(D)→ {1, . . . , k} is given. Note that ak-vertex subgraphH will be colorful
with a probability of at leastk!/kk > e−k. Thus, we can find a copy ofT in D in ek expected iterations of the
following algorithm.

Theorem 5.1.Let T be a out-tree on k vertices and let D= (V,A) be a digraph. A subgraph of D isomorphic
to T, if one exists, can be found in O(k(4e)k · |A|) expected time.
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Algorithm 4 L(T, r)
Require: An out-treeT on k vertices, a specified vertexr of D
Ensure: CT(u) for each vertexu of D, which is a family of all color sets that appear on colorful copies of

T in D, whereu plays the role ofr

1: if |V(T)| = 1 then
2: for all u ∈ V(D) do
3: Insert{c(u)} into CT(u).
4: end for
5: ReturnCT(u) for each vertexu of D.
6: else
7: Choose an arc (r′, r′′) ∈ A(T).
8: Let T′ andT′′ be the subtrees ofT obtained by deleting (r′, r′′), whereT′ andT′′ containsr′ andr′′,

respectively.
9: CallL(T′, r′).

10: CallL(T′′, r′′).
11: for all u ∈ V(D) do
12: Compose the family of color setsCT(u) as follows:
13: for all (u, v) ∈ A(D) do
14: for all C′ ∈ CT′(u) andC′′ ∈ CT′′(v) do
15: C := C′ ∪C′′ if C′ ∩C′′ = ∅
16: end for
17: end for
18: end for
19: ReturnCT(u) for each vertexu of D.
20: end if

Proof. Let |V(T′)| = k′ and|V(T′′)| = k′′, wherek′ + k′′ = k. Then|CT′(u)| =
(

k−1
k′−1

)

and |CT′(u)| =
(

k−1
k′′−1

)

.

CheckingC′∩C′′ = ∅ takesO(k) time. Hence, lines 11-18 requires at most
(

k
k/2

)2 ·k|A| ≤ k22k|A| operations.
Let T(k) be the number of operations forL(T, r). We have the following recursion.

T(k) ≤ T(k′) + T(k′′) + k22k−2|A| (3)

By induction, it is not difficult to check thatT(k) ≤ k4k|A|. �

Let C be a family of vertexk-colorings of a digraphD. We callC an (n, k)-family of perfect hashing
functionsif for eachX ⊆ V(D), |X| = k, there is a coloringc ∈ C such thatX is colorful with respect to
c. One can derandomize the above algorithm of Alon et al. by using any (n, k)-family of perfect hashing
functions in the obvious way. The time complexity of the derandomized algorithm depends of the size of
the (n, k)-family of perfect hashing functions. Letτ(n, k) denote the minimum size of an (n, k)-family of
perfect hashing functions. Nilli [11] proved thatτ(n, k) ≥ Ω(ek logn/

√
k). It is unclear whether there is an

(n, k)-family of perfect hashing functions of sizeO∗(ek) [4], but even if it does exist, the running time of the
derandomized algorithm would beO∗((4e)k).

5.2 Proof of Lemma 2.2

Proof. First we want to show that the valuesni chosen in line 3 of the algorithm do not increase during
the performance of the algorithm. The values ofni do not increase because the values of the difference
d(A, B) do not increase during the performance of the algorithm. Infact, d(A, B) strictly decreases. To see
this, suppose that the elementi is selected in the present step. Ifn(A∪ {i}) < n(B− {i}), then obviously the
differenced(A, B) strictly decreases. Else ifn(A∪{i}) > n(B−{i}), we haved(A∪{i}, B−{i}) < ni < d(A, B).
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To see that the algorithm returns a greedily optimal bipartition (A, B), it is enough to observe that for
the final bipartition (A, B), moving any element ofA or B does not decreased(A, B). Suppose that the last
movement of the elementi0 makesn(A) > n(B). Then a simple computation implies thatd(A, B) < ni0.

Since the values ofni in line 3 of the algorithm do not increase during the performance of the algorithm,
n j ≥ ni0 > d(A, B) for every j ∈ A, the movement of any element inA would not decreased(A, B). On the
other hand suppose thatn(A) < n(B). By the definition of the algorithm, for everyj ∈ B with a positive
weight we haven j ≥ d(A, B) and thus the movement of any element inB would not decreased(A, B). Hence
the current bipartition (A, B) is greedily optimal.

Now let us consider the running time of the algorithm. Sorting the elements in nondecreasing order of
their weights will takeO(q logq) time. Moreover, once an element is moved from one partite set to another,
it will not be moved again and we move at mostq elements without duplication during the algorithm. This
gives us the running time ofO(q logq). �

5.3 Proof of Theorem 2.9

Proof. Let L(T,D) denote the number of times the ‘if’-statement in line 1 of Algorithm find-tree is false
(in all recursive calls tofind-tree). We will prove thatL(T,D) ≤ R(k) = BkρCk + 1, B ≥ 1 is a constant
whose value will determined later in the proof. This would imply that the number of calls tofind-tree where
the ‘if’-statement in line 1 is true is also bounded byR(k) as if line 1 is true then we will have two calls to
find-tree (in lines 15 and 18). We can therefore think of the search treeof Algorithm 3 as an out-tree where
all internal nodes have out-degree equal two and therefore the number of leaves is grater than the number
of internal nodes.

Observe that each iteration of the for-loop in line 12 of Algorithm find-tree makes two recursive calls
to find-tree and the time spent in each iteration of the for-loop is at mostO(n2). As the time spent in each
call of find-tree outside the for-loop is also bounded byO(n2) we obtain the desired complexity bound
O(n2kρCk).

Thus, it remains to show thatL(T,D) ≤ R(k) = BkρCk + 1. First note that ifk = 0 or k = 1 then line
1 is false exactly once (as there are no recursive calls) and min{R(1),R(0)} ≥ 1 = L(T,D). If k ∈ {3, 4},
then line 1 is false a constant number of times by Lemma 2.7 andlet B be the minimal integer such that
L(T,D) ≤ R(k) = BkρCk + 1 for bothk = 3 and 4. Thus, we may now assume thatk ≥ 5 and proceed by
induction onk.

Let R′(α, k) = 6((1−α)k)ρC(1−α)k

ααk(1−α)(1−α)k . Let α be defined as in line 8 of Algorithmfind-tree. We will consider the
following two cases separately.

Case 1,α ≥ α∗: In this case we note that the following holds ask ≥ 2 and (1− α) ≥ α.

L(T,D) ≤
⌈

2.51
ααk(1−α)(1−α)k

⌉

× (R(αk) + R((1− α)k))

≤ 3
ααk(1−α)(1−α)k × (2 · R((1− α)k))

= R′(α, k).

By the definition ofρ we observe that (1− α∗)ρ = 1/6, which implies that the following holds by the
definition ofC:

R′(α∗, k) = 6((1− α∗)k)ρC(1−α∗)k ×Cα
∗k = kρCk = R(k).

Observe that

ln(R′(α, k)) = ln(6)+ ρ [ln(k) + ln(1− α)] + k [(1 − α) ln(C) − α ln(α) − (1− α) ln(1− α)]

We now differentiate ln(R′(α, k)) which gives us the following:
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∂(ln(R′(α,k)))
∂(α) = ρ −1

1−α + k (− ln(C) − (1+ ln(α)) + (1+ ln(1− α)))
=

−ρ
1−α + k

(

ln
(

1−α
αC

))

.

Sincek ≥ 0 we note that the above equality implies thatR′(α, k) is a decreasing function inα in the
intervalα∗ ≤ α ≤ 1/2. ThereforeL(T,D) ≤ R′(α, k) ≤ R′(α∗, k) = R(k), which proves Case 1.

Case 2,α < α∗: In this case we will specify the splitting vertex when we makerecursive calls using the
larger ofUw andUb (defined in line 5 of Algorithmfind-tree). Letα′ denote theα-value in such a recursive
call. By Lemma 2.5 we note that the following holds :

1
2
≥ α′ ≥ 1− 2α

1− α > α
∗.

Analogously to Case 1 (asR′(α′, (1− α)k) is a decreasing function inα′ when 1/2 ≥ α′ ≥ α∗) we note
that theL-values for these recursive calls are bounded by the following, whereβ = 1−2α

1−α (which implies that
(1− α)(1− β) = α):

R′(α′, (1− α)k) ≤ R′ (β, (1− α)k)

= 3

(ββ(1−β)(1−β))(1−α)k × 2× R((1− β)(1− α)k)

=
6R(αk)

(ββ(1−β)(1−β))(1−α)k .

Thus, in the worst case we may assume thatα′ = β = (1 − 2α)/(1 − α) in all the recursive calls using
the larger ofUw andUb. The following now holds (ask ≥ 2).

L(T,D) ≤
⌈

2.51
ααk(1−α)(1−α)k

⌉

× (R(αk) + R′(α′, (1− α)k))

≤ 3
ααk(1−α)(1−α)k × R(αk) ×

(

1+ 6

(ββ(1−β)(1−β))(1−α)k

)

≤ 3R(αk)
ααk(1−α)(1−α)k × 7

(ββ(1−β)(1−β))(1−α)k

Let R∗(α, k) denote the bottom right-hand side of the above equality (for any value ofα). By the
definition ofρ we note thatρ = 2 ln(1/6)

2 ln(1−α∗) =
ln(1/36)
ln(α∗) , which implies that (α∗)ρ = 1/36. By the definition ofC

and the fact that ifα = α∗ thenβ = (1− 2α∗)/(1− α∗) = α∗, we obtain the following:

R∗(α∗, k) = 3R(α∗k)
α∗α∗k(1−α∗)(1−α∗)k × 7

(α∗α∗ (1−α∗)(1−α∗))(1−α∗)k

= 21 · R(α∗k) ·Cα∗k ·Cα∗(1−α∗)k

= 21α∗ρkρCα
∗k ×C(2α∗−α∗2)k

= 21α∗ρR(k)

< R(k).

We will now simplify R∗(α, k) further, before we differentiate ln(R∗(α, k)). Note thatβ = 1−2α
1−α implies

that (1− α)(1− β) = α andβ(1− α) = 1− 2α.

R∗(α, k) = 21R(αk)
ααk(1−α)(1−α)k × 1

(ββ(1−β)(1−β))(1−α)k

=
21(αk)ρCαk

ααk(1−α)(1−α)k × 1

( 1−2α
1−α )(1−2α)k( α

1−α )
αk

= 21(αk)ρ
(

Cα

α2α(1−2α)(1−2α)

)k
.
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Thus, we have the following:

ln(R∗(α, k)) = ln(21)+ ρ (ln(k) + ln(α)) + k (α ln(C) − 2α ln(α) − (1− 2α) ln(1− 2α)) .

We now differentiate ln(R∗(α, k)) which gives us the following:

∂(ln(R∗(α,k)))
∂(α) =

ρ

α
+ k (ln(C) − 2(1+ ln(α)) + 2(1+ ln(1− 2α)))

=
ρ

α
+ k

(

ln
(

C(1−2α)2

α2

))

Sincek ≥ 0 we note that the above equality implies thatR∗(α, k) is an increasing function inα in the
interval 1/3 ≤ α ≤ α∗. ThereforeL(T,D) ≤ R∗(α, k) ≤ R∗(α∗, k) < R(k), which proves Case 2. �

5.4 Derandomization of Our Randomized Algorithm for k-Out-Tree

In this subsection we discuss the derandomization of the algorithm find-tree using the general method
presented by Chen et al. [4] and based on the construction of (n, k)-universal sets studied in [10].

Definition 5.2. An (n, k)-universal setF is a set of functions from[n] to {0, 1}, such that for every subset
S ⊆ [n], |S| = k the setF |S = { f |S, f ∈ T} is equal to the set2S of all the functions from S to{0, 1}.

Proposition 5.3 ([10]). There is a deterministic algorithm of running time O(2kkO(logk)n logn) that con-
structs an(n, k)-universal setF such that|F | = 2kkO(logk) logn

We explain how Proposition 5.3 is used to achieve a deterministic algorithm for thek-Out-Tree problem.
Let V(G′) = {v1, . . . , vn}. First, we construct an (n, k)-universal setF of size 2kkO(logk) logn (this can be
done in timeO(2kkO(logk)n logn)). Then we call the algorithmfind-tree but replace steps 13 and 14 by the
following steps:

13 for each functionf ∈ F do

14 ∀i such thatxi ∈ V(D) −⋃

u∈L Xu, let vi be colored in white iff (i) = 0 and in black otherwise

Note that this replacement makes the algorithmfind-tree become deterministic. Then, sinceF is a (n, k)-
universal set and if there is a subgraph isomorphic toT in D, there is a function inF such that the vertices
corresponding toUw in D with be colored in white while the vertices corresponding toUb will be colored in
black. Using induction onk, we can prove that this deterministic algorithm correctly returns the required tree
at the condition that such a tree exists in the graph. We can also derive the running time of this deterministic
algorithm to find a complexity ofO(n2Ck+o(k)).

Theorem 5.4. There is a O(n2Ck+o(k)) time deterministic algorithm that solves the k-Out-Tree problem.
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