Abstract
A random set can be regarded as the result of the imprecise observation of a random variable. Following this interpretation, we study to which extent the upper and lower probabilities induced by the random set keep all the information about the values of the probability distribution of the random variable. We link this problem to the existence of selectors of a multi-valued mapping and with the inner approximations of the upper probability, and prove that under fairly general conditions (although not in all cases), the upper and lower probabilities are an adequate tool for modelling the available information. Finally, we study the particular case of consonant random sets and we also derive a relationship between Aumann and Choquet integrals.
We acknowledge the financial support of the projects TIN2008-06796-C04-01, MTM2007-61193 and TIN2007-67418-C03-03.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aumann, J.: Integral of set-valued functions. Journal of Mathematical Analysis and Applications 12, 1–12 (1965)
Arstein, Z., Hart, S.: Law of large numbers for random sets and allocation processes. Mathematics of Operations Research 6(4), 485–492 (1981)
Billingsley, P.: Probability and measure. Wiley, New York (1986)
Castaldo, A., Maccheroni, F., Marinacci, M.: Random correspondences as bundles of random variables. Sankhya 66(3), 409–427 (2004)
Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)
Couso, I.: Teoría de la Probabilidad con datos imprecisos. Algunos aspectos. PhD Thesis, University of Oviedo (1999) (in Spanish)
Couso, I., Montes, S., Gil, P.: Second order possibility measure induced by a fuzzy random variable. In: Bertoluzza, C., Gil, M.A., Ralescu, D.A. (eds.) Statistical modeling, analysis and management of fuzzy data. Springer, Heidelberg (2002)
de Cooman, G., Aeyels, D.: A random set description of a possibility measure and its natural extension. IEEE Transactions on Systems, Man and Cybernetics 30, 124–130 (2000)
Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)
Denneberg, D.: Non-additive measure and integral. Kluwer, Dordrecht (1994)
Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets and Systems 24, 279–300 (1987)
Dubois, D., Prade, H.: Focusing versus updating in belief function theory. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 71–95. Wiley, Chichester (1994)
Goodman, I.R.: Fuzzy sets as equivalence classes of possibility random sets. In: Yager, R.R. (ed.) Fuzzy Sets and Possibility Theory: Recent Developments, pp. 327–343. Pergamon, Oxford (1982)
Grabisch, M., Nguyen, H.T., Walker, E.A.: Fundamentals of uncertainty calculi with applications to fuzzy inference. Kluwer, Dordretch (1995)
Hart, S., Köhlberg, E.: Equally distributed correspondences. Journal of Mathematical Economics 1(2), 167–674 (1974)
Hess, C.: The distribution of unbounded random sets and the multivalued strong law of large numbers in nonreflexive Banach spaces. Journal of Convex Analysis 6(1), 163–182 (1999)
Himmelberg, C.J.: Measurable relations. Fund. Mathematicae 87, 53–72 (1975)
Himmelberg, C.J., Parthasarathy, T., Van Vleck, F.S.: On measurable relations. Fundamenta Mathematicae 111(2), 161–167 (1981)
Huber, P.J., Strassen, V.: Minimax tests and the Neyman-Pearson lemma for capacities. Annals of Statistics 1(2), 251–263 (1973)
Krätschmer, V.: When fuzzy measures are upper envelopes of probability measures. Fuzzy Sets and Systems 138(3), 455–468 (2003)
Kruse, R., Meyer, K.D.: Statistics with vague data. D. Reidel Publishing Company, Dordrecht (1987)
Mathéron, G.: Random sets and integral geometry. Wiley, New York (1975)
Miranda, E., Couso, I., Gil, P.: Upper probabilities and selectors of random sets. In: Grzegorzewski, P., Hryniewicz, O., Gil, M.A. (eds.) Soft methods in probability, statistics and data analysis, pp. 126–133. Physica-Verlag, Heidelberg (2002)
Miranda, E., Couso, I., Gil, P.: A random set characterisation of possibility measures. Information Sciences 168(1-4), 51–75 (2004)
Miranda, E., Couso, I., Gil, P.: Random sets as imprecise random variables. Journal of Mathematical Analysis and Applications 307(1), 32–47 (2005)
Miranda, E., Couso, I., Gil, P.: Random intervals as a model for imprecise information. Fuzzy Sets and Systems 154(3), 386–412 (2005)
Nguyen, H.T.: On random sets and belief functions. Journal of Mathematical Analysis and Applications 65(3), 531–542 (1978)
Philippe, F., Debs, G., Jaffray, J.-Y.: Decision making with monotone lower probabilities of infinite order. Mathematics of Operations Research 24(3), 767–784 (1999)
Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)
Wagner, D.H.: Survey of measurable selection theorems. SIAM Journal Control and Optimization 15(5), 859–903 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Miranda, E., Couso, I., Gil, P. (2009). Upper Probabilities Attainable by Distributions of Measurable Selections. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-02906-6_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02905-9
Online ISBN: 978-3-642-02906-6
eBook Packages: Computer ScienceComputer Science (R0)