Skip to main content

General Scheme for Perfect Quantum Network Coding with Free Classical Communication

  • Conference paper
Automata, Languages and Programming (ICALP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5555))

Included in the following conference series:

Abstract

This paper considers the problem of efficiently transmitting quantum states through a network. It has been known for some time that without additional assumptions it is impossible to achieve this task perfectly in general — indeed, it is impossible even for the simple butterfly network. As additional resource we allow free classical communication between any pair of network nodes. It is shown that perfect quantum network coding is achievable in this model whenever classical network coding is possible over the same network when replacing all quantum capacities by classical capacities. More precisely, it is proved that perfect quantum network coding using free classical communication is possible over a network with k source-target pairs if there exists a classical linear (or even vector-linear) coding scheme over a finite ring. Our proof is constructive in that we give explicit quantum coding operations for each network node. This paper also gives an upper bound on the number of classical communication required in terms of k, the maximal fan-in of any network node, and the size of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Bashabsheh, A., Yongacoglu, A.: On the capacity bound of undirected networks. arXiv.org e-Print archive, arXiv:0804.4455 (2008)

    Google Scholar 

  3. Dougherty, R., Freiling, C.F., Zeger, K.: Insufficiency of linear coding in network information flow. IEEE Transactions on Information Theory 51(8), 2745–2759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dougherty, R., Zeger, K.: Nonreversibility and equivalent constructions of multiple-unicast networks. IEEE Transactions on Information Theory 52(11), 5067–5077 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Harvey, N., Kleinberg, R., Lehman, A.: On the capacity of information networks. IEEE Transactions on Information Theory 52(6), 2410–2424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Physical Review A 76(4), 040301(R) (2007)

    Article  MathSciNet  Google Scholar 

  7. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 610–621. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Iwama, K., Nishimura, H., Paterson, M., Raymond, R., Yamashita, S.: Polynomial-time construction of linear network coding. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 271–282. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding for general graphs. arXiv.org e-Print archive, quant-ph/0611039 (2006)

    Google Scholar 

  10. Jaggi, S., Sanders, P., Chou, P.A., Effros, M., Egner, S., Jain, K., Tolhuizen, L.: Polynomial time algorithms for multicast network code construction. IEEE Transactions on Information Theory 51(6), 1973–1982 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koetter, R.: Network coding home page, http://tesla.csl.uiuc.edu/~koetter/NWC/

  12. Lehman, A., Lehman, E.: Complexity classification of network information flow problems. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, pp. 142–150 (2004)

    Google Scholar 

  13. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication — the butterfly and beyond. arXiv.org e-Print archive, quant-ph/0608223 (2006)

    Google Scholar 

  14. Li, S.-Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Transactions on Information Theory 49(2), 371–381 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Z., Li, B., Lau, L.C.: A constant bound on throughput improvement of multicast network coding in undirected networks. IEEE Transactions on Information Theory 55(3), 1016–1026 (2009)

    Google Scholar 

  16. Médard, M., Effros, M., Ho, T., Karger, D.: On coding for non-multicast networks. In: Proceedings of the 41st Annual Allerton Conference on Communication, Control and Computing (2003)

    Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Shi, Y., Soljanin, E.: On multicast in quantum networks. In: Proceedings of the 40th Annual Conference on Information Sciences and Systems, pp. 871–876 (2006)

    Google Scholar 

  19. Wang, C.-C., Shroff, N.B.: Beyond the butterfly – a graph-theoretic characterization of the feasibility of network coding with two simple unicast sessions. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 121–125 (2007)

    Google Scholar 

  20. Wang, C.-C., Shroff, N.B.: Intersession network coding for two simple multicast sessions. In: Proceedings of the 45th Annual Allerton Conference on Communication, Control and Computing (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kobayashi, H., Le Gall, F., Nishimura, H., Rötteler, M. (2009). General Scheme for Perfect Quantum Network Coding with Free Classical Communication. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02927-1_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02926-4

  • Online ISBN: 978-3-642-02927-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics