Skip to main content

A Survey of Stochastic Games with Limsup and Liminf Objectives

  • Conference paper
Automata, Languages and Programming (ICALP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5556))

Included in the following conference series:

  • 1423 Accesses

Abstract

A stochastic game is a two-player game played on a graph, where in each state the successor is chosen either by one of the players, or according to a probability distribution. We survey stochastic games with limsup and liminf objectives. A real-valued reward is assigned to each state, and the value of an infinite path is the limsup (resp. liminf) of all rewards along the path. The value of a stochastic game is the maximal expected value of an infinite path that can be achieved by resolving the decisions of the first player. We present the complexity of computing values of stochastic games and their subclasses, and the complexity of optimal strategies in such games.

This research was supported in part by the Swiss National Science Foundation under the Indo-Swiss Joint Research Programme, by the European Network of Excellence on Embedded Systems Design (ArtistDesign), by the European projects COMBEST, Quasimodo, Gasics, by the PAI program Moves funded by the Belgian Federal Government, and by the CFV (Federated Center in Verification) funded by the F.R.S.-FNRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bjorklund, H., Sandberg, S., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 673–685. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Chatterjee, K., Henzinger, T.A.: Probabilistic systems with limsup and liminf objectives. In: ILC (2009)

    Google Scholar 

  6. Chatterjee, K., Henzinger, T.A., Piterman, N.: Algorithms for Büchi games. In: GDV (2006)

    Google Scholar 

  7. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA 2004, pp. 121–130. SIAM, Philadelphia (2004)

    Google Scholar 

  9. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 51–73. American Mathematical Society (1993)

    Google Scholar 

  10. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University (1997)

    Google Scholar 

  11. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  12. Gimbert, H.: Jeux positionnels. PhD thesis, Université Paris 7 (2006)

    Google Scholar 

  13. Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23, 309–311 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liggett, T.A., Lippman, S.A.: Stochastic games with perfect information and time average payoff. Siam Review 11, 604–607 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maitra, A., Sudderth, W. (eds.): Discrete Gambling and Stochastic Games. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  17. Martin, D.A.: The determinacy of Blackwell games. The Journal of Symbolic Logic 63(4), 1565–1581 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65, 149–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Beyond Words, ch. 7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Doyen, L., Henzinger, T.A. (2009). A Survey of Stochastic Games with Limsup and Liminf Objectives. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02930-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02930-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02929-5

  • Online ISBN: 978-3-642-02930-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics