Skip to main content

Smoothed Analysis of Balancing Networks

  • Conference paper
Automata, Languages and Programming (ICALP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5556))

Included in the following conference series:

Abstract

In a load balancing network each processor has an initial collection of unit-size jobs, tokens, and in each round, pairs of processors connected by balancers split their load as evenly as possible. An excess token (if any) is placed according to some predefined rule. As it turns out, this rule crucially effects the performance of the network. In this work we propose a model that studies this effect. We suggest a model bridging the uniformly-random assignment rule, and the arbitrary one (in the spirit of smoothed-analysis) by starting from an arbitrary assignment of balancer directions, then flipping each assignment with probability α independently. For a large class of balancing networks our result implies that after \(\mathcal O(\log n)\) rounds the discrepancy is whp \(\mathcal O( (1/2-\alpha) \log n + \log \log n)\). This matches and generalizes the known bounds for α= 0 and α= 1/2.

Tobias Friedrich and Thomas Sauerwald were partially supported by postdoctoral fellowships from the German Academic Exchange Service (DAAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the icp algorithm, with an application to the k-means method. In: 47th IEEE Symp. on Found. of Comp. Science (FOCS 2006), pp. 153–164 (2006)

    Google Scholar 

  2. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. of the ACM 41(5), 1020–1048 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific (1997)

    Google Scholar 

  4. Bohman, T., Frieze, A., Martin, R.: How many random edges make a dense graph hamiltonian? Random Structures and Algorithms 22(1), 33–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coja-Oghlan, A., Feige, U., Frieze, A., Krivelevich, M., Vilenchik, D.: On smoothed k-CNF formulas and the walksat algorithm. In: 20th ACM-SIAM Symp. on Discrete Algorithms (SODA 2009) (2009)

    Google Scholar 

  6. Dowd, M., Perl, Y., Rudolph, L., Saks, M.: The periodic balanced sorting network. J. of the ACM 36(4), 738–757 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feige, U.: Refuting smoothed 3CNF formulas. In: 48th IEEE Symp. on Found. of Comp. Science (FOCS 2007), pp. 407–417 (2007)

    Google Scholar 

  8. Flaxman, A., Frieze, A.: The diameter of randomly perturbed digraphs and some applications. Random Structures and Algorithms 30, 484–504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Friedrich, T., Sauerwald, T.: Near-perfect load balancing by randomized rounding. In: 41st Annual ACM Symposium on Theory of Computing, STOC 2009 (to appear, 2009)

    Google Scholar 

  10. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San Francisco (2008)

    Google Scholar 

  11. Herlihy, M., Tirthapura, S.: Randomized smoothing networks. J. Parallel and Distributed Computing 66(5), 626–632 (2006a)

    Article  MATH  Google Scholar 

  12. Herlihy, M., Tirthapura, S.: Self-stabilizing smoothing and counting networks. Distributed Computing 18(5), 345–357 (2006b)

    Article  MATH  Google Scholar 

  13. Krivelevich, M., Sudakov, B., Tetali, P.: On smoothed analysis in dense graphs and formulas. Random Structures and Algorithms 29(2), 180–193 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manthey, B., Rüdiger, R.: Smoothed analysis of binary search trees. Theoret. Computer Sci. 378(3), 292–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mavronicolas, M., Sauerwald, T.: The impact of randomization in smoothing networks. In: 27th Annual ACM Principles of Distributed Computing (PODC 2008), pp. 345–354 (2008)

    Google Scholar 

  16. Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of Markov chains and the analysis of iterative load balancing schemes. In: 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 694–705 (1998)

    Google Scholar 

  17. Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. Math. Program. 110(1), 21–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spielman, D., Teng, S.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. J. of the ACM 51(3), 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vershynin, R.: Beyond hirsch conjecture: Walks on random polytopes and smoothed complexity of the simplex method. In: 47th IEEE Symp. on Found. of Comp. Science (FOCS 2006), pp. 133–142 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedrich, T., Sauerwald, T., Vilenchik, D. (2009). Smoothed Analysis of Balancing Networks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02930-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02930-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02929-5

  • Online ISBN: 978-3-642-02930-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics