
ar
X

iv
:1

00
6.

14
43

v1
 [

cs
.D

S]
 8

 J
un

 2
01

0

SMOOTHED ANALYSIS OF BALANCING NETWORKS∗

TOBIAS FRIEDRICH1, THOMAS SAUERWALD2, AND DAN VILENCHIK3

Abstract. In a balancing network each processor has an initial col-
lection of unit-size jobs (tokens) and in each round, pairs of processors
connected by balancers split their load as evenly as possible. An ex-
cess token (if any) is placed according to some predefined rule. As it
turns out, this rule crucially affects the performance of the network.
In this work we propose a model that studies this effect. We suggest
a model bridging the uniformly-random assignment rule, and the arbi-
trary one (in the spirit of smoothed-analysis). We start with an arbi-
trary assignment of balancer directions and then flip each assignment
with probability α independently. For a large class of balancing net-
works our result implies that after O(log n) rounds the discrepancy is
O((1/2 − α) log n + log log n) with high probability. This matches and
generalizes known upper bounds for α = 0 and α = 1/2. We also show
that a natural network matches the upper bound for any α.

1. Introduction

In this work we are concerned with two topics whose name contains the
word “smooth”, but in totally different meaning. The first is balancing
(smoothing) networks, the second is smoothed analysis. Let us start by intro-
ducing these two topics, and then introduce our contribution – interrelating
the two.

1.1. Balancing (smoothing) networks. In the standard abstraction of
smoothing (balancing) networks [2], processors are modeled as the vertices
of a graph and connection between them as edges. Each process has an
initial collection of unit-size jobs (which we call tokens). Tokens are routed
through the network by transmitting tokens along the edges according to
some local rule. We measure the quality of such a balancing procedure by
the maximum difference between the number of tokens at any two vertices
at the end.

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Simon Fraser University, Burnaby, Canada
3 Department of Mathematics, University of California Los Angeles, CA, USA
∗ A conference version [10] appeared in the 36th International Colloquium on Automata,
Languages and Programming (ICALP 2009). This work was done while the first two
authors were postdoctoral fellows at International Computer Science Institute Berkeley
supported by the German Academic Exchange Service (DAAD) and the third author was
a postdoctoral fellow at the Computer Science Division of the University of California
Berkeley.

1

http://arxiv.org/abs/1006.1443v1

2 SMOOTHED ANALYSIS OF BALANCING NETWORKS

1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

1111
1110
1101

1 2 3 4
INPUT OUTPUT

Figure 1. The network CCC16.

The local scheme of communication we study is a balancer gate: the
number of tokens is split as evenly as possible between the communicat-
ing vertices with the excess token (if such remains) routed to the vertex
towards which the balancer points. More formally, the balancing network
consists of n vertices v1, v2, . . . , vn, and m matchings (either perfect or not)
M1,M2, . . . ,Mm. We associate with every matching edge a balancer gate
(that is, we think of the edges as directed edges). At the beginning of
the first iteration, xj tokens are placed in vertex vj, and at every itera-
tion r = 1, . . . ,m, the vertices of the network perform a balancing opera-
tion according to the matching Mr (that is, vertices vi and vj interact if
(vi, vj) ∈ Mr).

One motivation for considering smoothing networks comes from the
server-client world. Each token represents a client request for some ser-
vice; the service is provided by the servers residing at the vertices. Routing
tokens through the network must ensure that all servers receive approxi-
mately the same number of tokens, no matter how unbalanced the initial
number of tokens is (cf. [2]). More generally, smoothing networks are attrac-
tive for multiprocessor coordination and load balancing applications where
low-contention is a requirement; these include producers-consumers [11] and
distributed numerical computations [3]. Together with counting networks,
smoothing networks have been studied quite extensively since introduced in
the seminal paper of Aspnes et al. [2].

Herlihy and Tirthapura [12, 13] initiated the study of the CCC network
(cube-connected-cycles, see Figure 1) as a smoothing network1. For the
special case of the CCC, sticking to previous conventions, we adopt a “topo-
graphical” view of the network, thus calling the vertices wires, and looking
at the left-most side of the network as the “input” and the right-most as

1Actually, they considered the so-called block network. However, it was observed in [16]
that the block network is isomorphic to the CCC-network and therefore we will stick to
the latter in the following.

SMOOTHED ANALYSIS OF BALANCING NETWORKS 3

the “output”. In the CCC, two wires at layer ℓ are connected by a balancer
if the respective bit strings of the wires differ exactly in bit ℓ. The CCC is a
canonical network in the sense that it has the smallest possible depth (num-
ber of rounds) of log n as a smaller depth cannot ensure any discrepancy
independent of the initial one. Moreover, it has been used in more advanced
constructions such as the periodic (counting) network [2, 6].

As it turns out, the initial setting of the balancers’ directions is crucial.
Two popular options are an arbitrary orientation or a uniformly random one.
A maximal discrepancy of log n was established for the CCCn for an arbitrary
initial orientation [13]. For a random initial orientation of the CCCn, [12]
show a discrepancy of at most 2.36

√
log n for the CCCn (this holds whp2

over the random initialization), which was improved by Mavronicolas and
Sauerwald [16] to log log n+O(1) (and a matching lower bound).

Results for more general networks have been derived in Rabani, Sinclair,
and Wanka [17] for arbitrary orientations. For expander graphs, they show
an O(log n)-discrepancy after O(log(Kn)) rounds whenK is the discrepancy
of the initial load vector. This was recently strengthened assuming the
orientations are set randomly and in addition the matchings themselves are
chosen randomly [9]. Specifically, for expander graphs one can achieve within
the same number of rounds a discrepancy of only O(log log n).

1.2. Smoothed analysis. Let us now turn to the second meaning of
“smoothed”. Smoothed analysis comes to bridge between the random in-
stance, which typically has a very specific “unrealistic” structure, and the
completely arbitrary instance, which in many cases reflects just the worst
case scenario, and is thus over-pessimistic in general. In the smoothed anal-
ysis paradigm, first an adversary generates an input instance, then this
instance is randomly perturbed.

The smoothed analysis paradigm was introduced by Spielman and Teng
in 2001 [19] to help explain why the simplex algorithm for linear program-
ming works well in practice but not in (worst-case) theory. They considered
instances formed by taking an arbitrary constraint matrix and perturbing it
by adding independent Gaussian noise with variance ε to each entry. They
showed that, in this case, the shadow-vertex pivot rule succeeds in expected
polynomial time. Independently, Bohman, Frieze, and Martin [4] studied
the issue of Hamiltonicity in a dense graph when random edges are added.
In the context of graph optimization problems we can also mention [8, 14],
in the context of k-SAT [5, 7], and in various other problems [1, 15, 18, 20].

Our work joins this long series of papers studying perturbed instances in a
variety of problems. Specifically in our setting we study the following ques-
tion: what if the balancers were not set completely adversarially but also
not in a completely random fashion. Besides the mathematical and analyt-
ical challenge that such a problem poses, in real network applications one
may not always assume that the random source is unbiased, or in some cases

2Writing whp we mean with probability tending to 1 as n goes to infinity.

4 SMOOTHED ANALYSIS OF BALANCING NETWORKS

one will not be able to quantitatively measure the amount of randomness
involved in the network generation. Still it is desirable to have an estimate
of the typical behavior of the network. Although we do not claim that our
smoothed-analysis model captures all possible behaviors, it does give a rig-
orous and tight characterization of the tradeoff between the quality of load
balancing and the randomness involved in setting the balancers’ directions,
under rather natural probabilistic assumptions.

As far as we know, no smoothed analysis framework was suggested to a
networking related problem. Formally, we suggest the following framework.

1.3. The Model. We define both the smoothed-analysis aspect of the
model, and the load-balancing one. For the load balancing part, our model
is similar to (and, as we will shortly explain, a generalization of) the peri-
odic balancing circuits studied in [17]. We think of the balancing network in
terms of an n-vertex graph. The processors in the network are the vertices
of the graph, and balancers connecting processors are the (directed) edges
of the graph.

Before we proceed, since what follows is somewhat heavy on notation
and indices, it will be helpful for the reader to bear in mind the following
legend: we use superscripts (in round brackets) to denote a time stamp,
and subscripts to denote an index. In subscripts, we use the vertices of
the graph as indices (thus assuming some ordering of the vertex set). For

example, A
(i)
u,v stands for the (u, v)-entry in matrix A(i), which corresponds

to time/round i.
LetM (1), . . . ,M (T) be an arbitrary sequence of T (not necessarily perfect)

matchings. With each matching M (i) we associate a matrix P(i) with P
(i)
uv =

1/2 if u and v are matched in M (i), P
(i)
uu = 1/2 if u is matched in M (i),

P
(i)
uu = 1 if u is not matched in M (i), and P

(i)
uv = 0 otherwise.

In round i, every two vertices matched in M (i) perform a balancing op-
eration. That is, the sum of the number of tokens in both vertices is split
evenly between the two, with the remaining token (if exists) directed to the
vertex pointed by the matching edge.

Remark 1.1. In periodic balancing networks (see [17] for example)
an ordered set of d (usually perfect) matchings is fixed. Every round of
balancing is a successive application of the d matchings. Our model is a
(slight) generalization of the latter.

Let us now turn to the smoothed-analysis part. Given a balancing net-
work consisting of a set T of directed matchings, an α-perturbation of the
network is a flip of direction for every edge with probability α independently
of all other edges. Setting α = 0 gives the completely “adversarial model”,
and α = 1/2 is the uniform random case.

Remark 1.2. For our results, it suffices to consider α ∈ [0, 1/2]. The case
α > 1/2 can be reduced to the case α 6 1/2 by flipping the initial orientation

SMOOTHED ANALYSIS OF BALANCING NETWORKS 5

of all balancers and taking 1 − α instead of α. It is easy to see that both
distributions are identical.

1.4. Our Contribution. For a load vector x, its discrepancy is defined to
be maxu,v |xu − xv|. We use eu to denote the unit vector whose all entries

are 0 except the uth. For a matrix A, λ(A) stands for the second largest
eigenvalue of A (in absolute value). Unless stated otherwise, ‖z‖ stands for
the ℓ2-norm of the vector z. In the following, we will assume an ordering
of the vertices from 1 to n. When we write (u, v) ∈ E, we refer to the case
where u and v are connected by an undirected edge and u < v.

Theorem 1.1. Let G be a balancing network with matchings
M (1), . . . ,M (T). For any two time stamps t1, t2 satisfying t1 < t2 6 T , and
any input vector with initial discrepancy K, the discrepancy at time step t2
in α-perturbed G is whp at most

(t2 − t1) + 3
(
1
2 − α

)
t1 + Λ1 + Λ2,

where

Λ1 = max
w∈V

√

log n
∑t1

i=1

∑

[u:v]∈M (i)

(

(eu − ev)
T
(
∏t2

j=i+1P
(i)
)

ew

)2
,

Λ2 = λ
(∏t2

i=1P
(i)
)√

nK.

Before we proceed let us motivate the result stated in Theorem 1.1. There
are two factors that affect the discrepancy: the fact that tokens are indi-
visible (and therefore the balancing operation may not be “perfect”), and
how many balancing rounds are there. On the one hand, the more rounds
there are the more balancing operations are carried, and the smoother the
output is. On the other hand, the longer the process runs, its susceptibility
to rounding errors and arbitrary placement of excess tokens increases. This
is however only a seemingly tension, as indeed the more rounds there are,
the smoother the output is. Nevertheless, in the analysis (at least as we
carry it), this tension plays part. Specifically, optimizing over these two
contesting tendencies is reflected in the choice of t1 and t2. Λ2 is the contri-
bution resulting from the number of balancing rounds being bounded, and
Λ1, along with the first two terms, account for the indivisibly of the tokens.
In the cases that will interest us, t1, t2 will be chosen so that Λ1,Λ2 will be
low-order terms compared to the first two terms.

Our Theorem 1.1 also implies the following results:

• For the aforementioned periodic setting Theorem 1.1 implies the
following: after O (log(Kn)/ν) rounds (ν = (1 − λ(Q))−1), Q is
the so-called round matrix which corresponds to one period, K the
initial discrepancy) the discrepancy is whp at most

O
(
d log(Kn)

ν
·
(
1

2
− α

)

+
d log log n

ν

)

.

6 SMOOTHED ANALYSIS OF BALANCING NETWORKS

Setting α = 0 (and assuming K is polynomial in n) we get the
result of [17]3, and for α = 1/2 we get the result of [9]. (The
restriction on K being polynomial can be lifted but at the price
of more cumbersome expressions in Theorem 1.1. Arguably, the
interesting cases are anyway when the total number of tokens, and
in particular K, is polynomial). Complete details in Section 4.

• For the CCCn, after log n rounds the discrepancy is whp at most

3
(
1
2 − α

)
log n+ log log n+O(1).

Full details in Section 5.

Let us now turn to the lower bound. Here we consider the all-up-orientation
of the balancers of a CCCn meaning that before the α-perturbation, all
balancers are directed to the wire with a smaller number.

Theorem 1.2. Consider a CCCn with the all-up orientation of the balancers
and assume that the number of tokens at each wire is uniformly distributed
over {0, 1, . . . , n − 1} (independently at each wire). The discrepancy of the
α-perturbed network is whp at least

max
{(

1
2 − α

)
log n− 2 log log n, (1− o(1)) (log log n)/2

}

.

Two more points to note regarding the lower bound:

• For α = 0 our lower bound matches the experimental findings of
[12]. The authors examined CCC’s of size up to 224 where all bal-
ancers are set in the same direction and the number of tokens at
each input is a random number between 1 and 100, 000. Their obser-
vation was that the average discrepancy is close to (log n)/2 (which
matches our lower bound with α = 0).

• The input distribution that we use for the lower bound is arguably
more natural than the tailored and somewhat artificial ones used in
previous lower bound proofs [13, 16].

Finally, we state a somewhat more technical result that we obtain, which
lies in the heart of the proof of the lower bound and sheds light on the
mechanics of the CCC in the average case input. In what follows, for a
balancer b, we let Odd(b) be an indicator function which is 1 if b had an
excess token. By Bi we denote the set of balancers that affect output wire
i (that is, there is a path through consecutive layers from the balancers to
the output wire i). Bi(ℓ) is the restriction of Bi to balancers in layer ℓ.

Lemma 1.3. Consider a CCCn network with any fixed orientation of the
balancers. Assume that the number of tokens at each wire is uniformly dis-
tributed over {0, 1, . . . , n − 1} (independently at each wire). Then every
balancer b in layer ℓ, 1 6 ℓ 6 log n, satisfies the following properties:

3We point out that in the original statement in [17, Corollary 5], only the number of
periods is counted. Hence, in their statement the number of rounds is by a factor of d
smaller.

SMOOTHED ANALYSIS OF BALANCING NETWORKS 7

• Pr [Odd(b) = 1] = 1/2,
• moreover, for every wire i, {Odd(b) | b ∈ Bi} is a set of independent
random variables.

The proof of the lemma is given in Section 2.3. Let us remark at this point
that the lemma holding under such weak conditions is rather surprising.
First, it is valid regardless of the given orientation. Secondly, the Odd’s
of the balancers that affect the same output wire are independent. While
this is obvious for balancers that are in the same layer, it seems somewhat
surprising for balancers in subsequent layers that are connected.

1.5. Paper’s Organization. The remainder of the paper is organized as
follows. We set out with the proof of Theorem 1.2 in Section 2, preceding
the proof of Theorem 1.1 in Section 3. The reason is that the lower bound
is concerned with the CCCn (a special case of our general model). The
techniques used in the proof of the lower bound serve as a good introduction
to the more complicated proof of the upper bound. In Sections 4 and 5 we
show how to derive the special cases of the periodic balancing network and
the CCCn from Theorem 1.1. Finally we present experimental results that
we obtain for the CCCn in Section 6.

2. Proof of the Lower Bound

As we mentioned before, for the special case of the CCCn we adopt a
“topographical” view of the network: calling the vertices wires, the time
steps layers, the left-most side of the network the “input” and the right-
most the “output”.

The proof outline is the following. Given an input vector x (uniformly
distributed over the range {0, . . . , n − 1}), we shall calculate the expected
divergence from the average load µ = ‖x‖1/n. The expectation is taken over
both the smoothing operation and the input. After establishing the “right”
order of divergence (in expectation) we shall prove a concentration result.
One of the main keys to estimating the expectation is Lemma 1.3 saying
that if the input is uniformly distributed as above, then for every balancer
b, Pr [Odd(b) = 1] = 1/2 (the probability is taken only over the input).

Before proceeding with the proof, let us introduce some further notation.
Let y1 be the number of tokens exiting on the top output wire of the network.
For any balancer b, Ψ(b) is an indicator random variable which takes the
value −1/2 if the balancer b was perturbed, and 1/2 otherwise (Recall that
all balancers are pointing up before the perturbation takes place).

Using the “standard” backward (recursive) unfolding (see also [12, 16] for
a concrete derivation for the CCCn) we obtain that,

y1 = µ+

logn
∑

ℓ=1

2− logn+ℓ
∑

b∈B1(ℓ)

Odd(b) ·Ψ(b).

8 SMOOTHED ANALYSIS OF BALANCING NETWORKS

The latter already implies that the discrepancy of the entire network is at
least

y1 − µ =

logn
∑

ℓ=1

2− logn+ℓ
∑

b∈B1(ℓ)

Odd(b) ·Ψ(b),

because there is at least one wire whose output has at most µ tokens (a
further improvement of a factor of 2 will be obtained by considering addi-
tionally the bottom output wire and proving that on this wire only a small
number of tokens exit).

Write y1 − µ =
∑logn

ℓ=1 Sℓ, defining for each layer 1 6 ℓ 6 log n,

(1) Sℓ := 2− logn+ℓ
∑

b∈B1(ℓ)

Odd(b) ·Ψ(b).

2.1. Proof of (12 − α) log n − 2 log log n. We now turn to bounding the
expected value of Sℓ. Using the following facts: (a) the Odd(b) and Ψ(b) are
independent (b) Lemma 1.3 which gives E [Odd(b)] = 1/2, (c) the simple
fact that E [Ψ(b)] = 1

2 − α and (d) the fact that in layer ℓ there are 2log n−ℓ

balancers which affect output wire 1 (this is simply by the structure of the
CCCn), we get

E [Sℓ] = 2− logn+ℓ
∑

b∈B1(ℓ)

1
2 · (12 − α)

= 2− logn+ℓ · 2logn−ℓ · 1
2 ·
(
1
2 − α

)

= 1
2

(
1
2 − α

)
.

This in turn gives that

E [y1 − µ] = E

[
logn
∑

ℓ=1

Sℓ

]

= 1
2

(
1
2 − α

)
log n.

Our next goal is to claim that typically the discrepancy behaves like the
expectation; in other words, a concentration result. Specifically, we apply
Hoeffdings bound to each layer Sℓ separately. It is applicable as the random
variables 2− logn+ℓ · Odd(b) · Ψ(b) are independent for balancers within the
same layer (such balancers concern disjoint sets of input wires, and the
input to the network was chosen independently for each wire). For the
bound to be useful we need the range of values for the random variables to
be small. Thus, in the probabilistic argument, we shall be concerned only
with the first log n− log log n layers (the last log log n layers we shall bound
deterministically). We use the following Hoeffding bound:

Lemma 2.1 (Hoeffdings Bound). Let Z1, Z2, . . . , Zn be a sequence of inde-
pendent random variables with Zi ∈ [ai, bi] for each i. Then for any number
ε > 0,

Pr [|
∑n

i=1 Zi −E [
∑n

i=1 Zi]| > ε] 6 2 · exp
(

− 2ε2
∑n

i=1(bi − ai)2

)

.

SMOOTHED ANALYSIS OF BALANCING NETWORKS 9

For any random variable X, let Range [X] be the difference between the
maximum and minimum value that X can attain. For a balancer b ∈ B1(ℓ)
we plug in,

Zb = 2− logn+ℓ ·Odd(b) ·Ψ(b),

ε = 2(ℓ−logn+log logn)/2,

Range [Zb]
2 =

(

2ℓ−logn
)2

,

and the sum is over 2log n−ℓ balancers in layer ℓ. Therefore,

Pr
[

|Sℓ −E [Sℓ]| > 2(ℓ−logn+log logn)/2
]

6 2 exp

(

−2 · 2ℓ−logn+log logn

2ℓ−logn

)

6 n−1.

In turn, with probability at least 1− log n/n (take the union bound over at
most log n Sℓ terms):

logn−log logn
∑

ℓ=1

Sℓ >
1
2

(
1
2 − α

)
(log n−log log n)−

logn−log logn
∑

ℓ=1

2(ℓ−log n+log logn)/2.

The second term is just a geometric series with quotient
√
2 , and therefore

can be bounded by 1
1−1/

√
2
< 4.

For the last log log n layers, we have that for every ℓ, |Sℓ| cannot exceed
1
2 , and therefore their contribution, in absolute value is at most 1

2 log log n.
Wrapping it up, whp

y1 − µ =

logn
∑

ℓ=1

Sℓ >
1
2

(
1
2 − α

)
(log n− log log n)− 4− 1

2 log log n.

The same calculation implies that the number of tokens at the bottom-most
output wire deviates from µ in the same way (just in the opposite direction),
so

yn − µ 6− 1
2

(
1
2 − α

)
(log n− log log n) + 4 + 1

2 log log n.

Hence, the discrepancy is whp lower bounded by (using the union bound
over the top and bottom wire, and not claiming independence)

y1 − yn >
(
1
2 − α

)
log n− 8− (32 − α) log log n

>
(
1
2 − α

)
log n− 2 log log n.

2.2. Proof of (1− o(1)) log log n/2. The proof here goes along similar lines
to Section 2.1, only that now we choose the set of balancers we apply it to
more carefully. By the structure of the CCCn, the last x layers form the
parallel cascade of n/2x independent CCC subnetworks each of which has 2x

wires (by independent we mean that the sets of balancers are disjoint).

10 SMOOTHED ANALYSIS OF BALANCING NETWORKS

We call a subnetwork good if after an α-perturbation of the all-up initial
orientation, all the balancers affecting the top (or bottom) output wire were
not flipped (that is, still point up).

The first observation that we make is that whp (for a suitable choice of
x, to be determined shortly) at least one subnetwork is good. Let us prove
this fact.

The number of balancers affecting the top (or bottom) wire in one of
the subnetworks is

∑x
ℓ=1 2

ℓ−1 6 2x. In total, there are no more than 2x+1

affecting both wires. The probability that none of these balancers was

flipped is (using our assumption α 6 1/2) (1 − α)2
x+1

> 2−2x+1
. Choos-

ing x = log log n − 2, this probability is at least n−1/2; there are at least
n/ log n such subnetworks, thus the probability that none is good is at most

(

1− n−1/2
)n/ logn

= o(1).

Fix one good subnetwork and let µ′ be the average load at the input to
that subnetwork. Repeating the arguments from Section 2.1 (with α =
0, log n re-scaled to x = log log n − 2, and now using the second item in
Lemma 1.3 which guarantees that the probability of Odd(·) = 1 is still 1/2,
for any orientation of the balancers) gives that in the top output wire of the
subnetwork there are whp at least µ′+(log log n)/4−O(log log log n) tokens,
while on the bottom output wire there are whp at most µ′ − (log log n)/4 +
O(log log log n) tokens. Using the union bound, the discrepancy is whp at
least their difference, that is, at least (log log n)/2−O(log log log n).

2.3. Proof of Lemma 1.3. The following observation is the key idea in
proving Lemma 1.3. Recall that Bj stands for the set of balancers that
affect wire j. For a balancer b in layer ℓ let A(b) describe an assignment of
Odd(b′) values for all balancers b′ in preceding layers that affect b (that is,
there is a path from b′ to b through consecutive layers).

Lemma 2.2. Consider a CCCn network with any orientation of the bal-
ancers. Assume that the number of tokens at each wire is uniformly dis-
tributed over {0, 1, . . . , n − 1}. Consider a balancer b in layer ℓ with
1 6 ℓ 6 log n and let x1, x2 denote the two input wires that go into b. Then
for any assignment A(b), ximod

(
n/2ℓ−1

)
| A(b) is uniformly distributed

over {0, 1, . . . ,
(
n/2ℓ−1

)
− 1}, for i = 1, 2.

The lemma easily implies Lemma 1.3: Consider a balancer b in layer
ℓ, with 1 6 ℓ 6 log n with two inputs x1, x2. Lemma 2.2 implies that
ximod

(
n/2ℓ−1

)
is uniformly distributed over {0, 1, . . . , n/2ℓ−1 − 1}, and in

particular is uniform over that range mod 2. Hence both x1, x2 are odd/even
with probability 1/2. Further observe that by the structure of the CCC net-
work, the input wires x1, x2 depend on disjoint sets of wires and balancers.
By the two latter facts it follows that the sum x1 + x2 is odd (or even)
with probability 1/2, or in other words Pr [Odd(b) = 1] = 1/2. The inde-
pendence part follows from the fact that this is true for every conditioning

SMOOTHED ANALYSIS OF BALANCING NETWORKS 11

A(b) on balancers from previous layers that affect b (by Lemma 2.2) and
the fact that balancers in the same layer that affect the same output wire
are independent by construction, as those balancers depend on disjoint sets
of balancers and disjoint sets of input wires.

Proof of Lemma 2.2. We prove the lemma by induction on ℓ, the layer of
the balancer. The base case is immediate: the input to a balancer in layer
1 is just the original input, which is by definition distributed uniformly over
{0, 1, . . . , n/21−1 − 1} which is simply {0, 1, . . . , n− 1}. Assume the lemma
is true for all balancers in layer ℓ and consider a balancer in layer ℓ + 1.
Let x1, x2 be its two input wires. By the structure of the CCC, the value on
each wire is determined by a disjoint set of balancers and preceding wires,
therefore we can treat, w.l.o.g., only x1. Let A1(b) be the part of A(b)
that affects x1. (A1(b) would be the set of balancers so that there is a
path from them to x1. Since the initial load on the input wires is chosen
independently at every wire, and the sets of balancers affecting x1 and x2
are disjoint, indeed only A1(b) affects x1, and the same applies for A2(b)
and x2). Thus our goal is to calculate

Pr
[

x1 ≡ kmod
(
n/2ℓ

) ∣
∣ A1(b)

]

.

Let b′ be the balancer in layer ℓ whose one outlet is x1, and let x′1, x
′
2 be its

two inputs. Recall that x1 = ⌊(x′1+x′2)/2⌋, and a possible +1 addition in case
this sum is odd and the balancer points in the direction of x1. Furthermore
it is easy to verify that for every a (assume a is even, if odd write a + 1
instead)

a/2 ≡ kmod
(
n/2ℓ

)
⇔ a ≡ 2kmod

(
n/2ℓ−1

)
.

Therefore for the event x1 ≡ kmod
(
n/2ℓ

)
to occur, either

• x′1 + x′2 ≡ 2kmod
(
n/2ℓ−1

)
, or

• x′1 +x′2 ≡ 2k− 1mod
(
n/2ℓ−1

)
(assuming w.l.o.g. that the balancer

points towards x1, otherwise the sum equals 2k + 1).

Let us consider the first case.

Pr
[

x′1 + x′2 ≡ 2kmod
(

n/2ℓ−1
)

| A1(b)
]

= Pr





n/2ℓ−1−1
∨

i=0

x′1 ≡ imod
(

n/2ℓ−1
)

∧ x′2 ≡ 2k − imod
(

n/2ℓ−1
)

| A1(b)



 .

Now observe that the values of x′1 and x′2 are determined independently, as
again, by the structure of the CCC, they involve disjoint sets of balancers
and input wires. Similarly to A1(b) we can define A′

1(b) and A′
2(b) which

correspond to the parts of A affecting x′1 and x′2. By the structure of the
CCC, A′

1(b) and A′
2(b) depend on a disjoint set of input wires (and balancers).

As the input is chosen independently for every wire, A′
2(b) does not affect

12 SMOOTHED ANALYSIS OF BALANCING NETWORKS

x′1 and similarly A′
1(b) does not affect x

′
2. Thus the latter reduces to

n/2ℓ−1−1
∑

i=0

Pr
[

x′1 ≡ imod
(

n/2ℓ−1
)

| A′
1(b)

]

·Pr
[

x′2 ≡ 2k − imod
(

n/2ℓ−1
)

| A′
2(b)

]

.

By the induction hypothesis (applied to the x′i at layer
ℓ − 1), for every i, each of Pr

[
x′1 ≡ imod

(
n/2ℓ−1

)
| A′

1(b)
]

and

Pr
[
x′2 ≡ 2k − imod

(
n/2ℓ−1

)
| A′

2(b)
]

is uniformly distributed over the

range {0, . . . , n/2ℓ−1 − 1}, and therefore in particular the entire expression
does not depend on k, or, put differently is the same for every choice of k.
The same argument holds for the case x′1 + x′2 = 2k− 1mod

(
n/2ℓ−1

)
. This

completes the proof. �

3. Proof of the Upper Bound

We shall derive our bound by measuring the difference between the num-
ber of tokens at any vertex and the average load (as we did in the proof of the

lower bound for the CCCn). Specifically we shall bound maxi |y(t)i − µ|, y(t)i

being the number of tokens at vertex i at time t (we use y(t) = (y
(t)
i)i∈V for

the vector of loads at time t). There are two contributions to the divergence
from µ (which we analyze separately):

• The divergence of the idealized process from µ due to its finiteness.
• The divergence of the actual process from the idealized process due
to indivisibility.

The idea to compare the actual process to an idealized one was suggested in
[17] and was combined with convergence results of Markov chains. Though
we were inspired by the basic setup from [17] and the probabilistic analysis
from [9], our setting differs in a crucial point: when dealing with the case
0 < α < 1/2, we get a delicate mixture of the deterministic and the random
model. For example, the random variables in our analysis are not symmetric
anymore which leads to additional technicalities (cf. Lemma 3.2).

Formally, let ξ(t) be the load vector of the idealized process at time t,
then by the triangle inequality (1 is the all-one vector)

‖y(t) − µ1‖∞ 6 ‖y(t) − ξ(t)‖∞ + ‖ξ(t) − µ1‖∞.

Proposition 3.1. Let G be a balancing network with matchings
M (1), . . . ,M (T). Then,

• ‖ξ(t2) − µ1‖∞ 6 Λ2,
• whp over the α-perturbation operation,
‖y(t2) − ξ(t2)‖∞ 6 (t2 − t1) + 3

(
1
2 − α

)
t1 + Λ1.

SMOOTHED ANALYSIS OF BALANCING NETWORKS 13

Theorem 1.1 then follows. The proof of the first part of the proposi-
tion consists of standard spectral arguments and is given in Section 3.1 for
completeness. The proof the second part is more involved and is given in
Section 3.2.

3.1. Proof of Proposition 3.1: Bounding ‖ξ(t2) − µ1‖∞. Letting ξ(0)

be the initial load vector, it is easily seen that

ξ(t2) = ξ(0)P(1) P(2) · · ·P(t2),

where P(i) is the matrix corresponding to matching M (i) (as defined in
Section 1.3). For simplicity let us abbreviate

P[i,j] := P(i) P(i+1) P(i+2) · · ·P(j).

Since P[1,t2] is real valued and symmetric (as each of the P(i)’s is), it has n
real-valued eigenvalues λ1 > λ2 > . . . > λn whose corresponding eigenvec-
tors v1, . . . , vn form an orthogonal basis of Rn. Next we observe that

ξ(t) − µ1 = ξ(0) P[1,t2] − µ1P[1,t2] = (ξ(0) − µ1)P[1,t2],

since 1 is an eigenvector of P[1,t2] corresponding to λ1 = 1. Furthermore
ξ(0) ·1 is just the total (initial) number of tokens, and therefore by definition

we get (ξ(0) − µ1) · 1 = 0. Finally, let us project ξ(0) − µ1 onto v1, . . . , vn,

that is, write ξ(0) − µ1 =
∑n

i=2 civi (c1 = 0 as we said). For our goal to

bound ‖ξ(t2) − µ1‖∞, it suffices to bound ‖ξ(t2) − µ1‖ (recall that ‖.‖ refers
to the ℓ2-norm) as for every vector z, ‖z‖∞ 6 ‖z‖. By the above,

∥
∥ξ(t2) − µ1

∥
∥ =

∥
∥(ξ(0) − µ1)P[1,t2]

∥
∥

=

∥
∥
∥
∥
∥

n∑

i=2

civi ·P[1,t2]

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

n∑

i=2

ciλivi

∥
∥
∥
∥
∥
.

Recall that λ(P[1,t2]) denotes the second largest eigenvalue of P[1,t2] in ab-
solute value. By the definition of the ℓ2-norm, and using the fact that the
v′is form an orthogonal basis, the latter equals

(
n∑

i=2

c2i λ
2
i ‖vi‖2

)1/2

6λ(P[1,t2]) ·
(

n∑

i=2

c2i ‖vi‖2
)1/2

=λ(P[1,t2]) · ‖ξ(0) − µ1‖
6λ(P[1,t2])K

√
n .

14 SMOOTHED ANALYSIS OF BALANCING NETWORKS

3.2. Proof of Proposition 3.1: Bounding ‖y(t2) − ξ(t2)‖∞. The proof
of this part resembles in nature the proof of Theorem 1.2. Assuming an
ordering of G’s vertices, for a balancer b in round t, b = (u, v), u < v, we

set Φ
(t)
u,v = 1 if the initial direction (before the perturbation) is u → v and

−1 otherwise (in the lower bound we considered the all-up orientation thus
we had no use of these variables). As in Section 2, for a balancer b = (u, v)

in round t, the random variable Ψ
(t)
u,v is −1/2 if the balancer is perturbed

and 1/2 otherwise. Using these notations we define a rounding vector ρ(t),
which accounts for the rounding errors in step t. Formally,

ρ(t)u =







Odd(y
(t−1)
u + y

(t−1)
v) ·Ψ(t)

u,v · Φ(t)
u,v

if u and v are matched in M (t) and u < v,

−Odd(y
(t−1)
u + y

(t−1)
v) ·Ψ(t)

v,u · Φ(t)
v,u

if u and v are matched in M (t) and u > v,

0 if u is unmatched.

Now we can write the actual process as follows:

(2) y(t) = y(t−1)P(t) + ρ(t).

Let M
(t)
Even

be the set of balancers at time t with no excess token, and M
(t)
Odd

the ones with. We can rewrite ρ(t) as follows:

ρ(t) =
∑

(u,v)∈M (t)
Odd

Ψ
(t)
u,v · Φ(t)

u,v ·
(
eu − ev

)
.

Unfolding equation (2), yields then

y(t) = y(0)P[1,t] +

t∑

i=1

ρ(i)P[i+1,t],

where P[2,1] = I. Observe that y(0)P[1,t] is just ξ(t) (as ξ(0) = y(0)), and
therefore

y(t) − ξ(t) =
∑t

i=1 ρ
(i)P[i+1,t]

=
∑t

i=1

∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v · Φ(i)

u,v · (eu − ev) ·P[i+1,t].

In turn,

(3)
(
y(t) − ξ(t)

)

w
=
∑t

i=1

∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v · Φ(i)

u,v ·
(

P
[i+1,t]
u,w −P

[i+1,t]
v,w

)

.

Our next task is to bound equation (3) to receive the desired term from
Proposition 3.1. We do that similar in spirit to the way we went around in
Section 2.1. We break this sum into its first t1 summands (whose expected
sum we calculate and to which we apply a large-deviation-bound). The
remaining (t− t1) terms are bounded deterministically.

SMOOTHED ANALYSIS OF BALANCING NETWORKS 15

One major difficulty in the general setting is that Lemma 1.3 (which was
crucial in the proof of Theorem 1.2) does not hold in general as its proof
makes substantial use of the special structure of the CCC.

Equation 3 with t = t2 yields

(x(t2) − ξ(t2))w =
∑t2

i=1

∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v

(

P
[i+1,t2]
u,w −P

[i+1,t2]
v,w

)

.

With eu,v denoting the row-vector with +1 at u-th column and −1 at v-
th column and zeros elsewhere, we can rewrite and split this equation as
follows:

(x(t2) − ξ(t2))w =
∑t1

i=1

∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v

(
eu,vP

[i+1,t2]ew
)

+
∑t2

i=t1+1

∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v

(
eu,vP

[i+1,t2]ew
)
.

Clearly,

∑t2
i=t1+1

∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v

(
eu,vP

[i+1,t2]ew
)

=
∑t2

i=t1+1

(
∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v eu,v

)

·
(
P[i+1,t2] ew

)
.

Observe that
∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v eu,v is a vector all of whose entries are

bounded by 1 in absolute value. Since P[i+1,t2] is a stochastic matrix, the
sum of all entries of the w-th column of P[i+1,t2], which is |P[i+1,t2] ew|1, is
exactly one, hence

∣
∣
∣
∑t2

i=t1+1

(
∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v eu,v

)

·
(
P[i+1,t2] ew

)
∣
∣
∣ 6 (t2 − t1).

It remains to bound

WOdd :=
∑t1

i=1

∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v

(
eu,vP

[i+1,t2]ew
)
.

Because WOdd is not necessarily a sum of independent random variables, it
will be more convenient to work with the following quantity (which is a sum
of independent random variables, as it assumes that every balancer gets an
excess token),

W :=
∑t1

i=1

∑

(u,v)∈M (i) Ψ
(i)
u,v Φ

(i)
u,v

(
eu,vP

[i+1,t2]ew
)
.

So our strategy is first to bound the deviation of W from its mean by Ho-
effdings Bound and then apply the following lemma (whose proof is in Sec-
tion 3.3), which justifies using W instead of WOdd.

16 SMOOTHED ANALYSIS OF BALANCING NETWORKS

Lemma 3.2. Fix 0 6 α 6 1
2 . For all t1, t2 with t1 < t2 6 T and arbitrary

weights w
(i)
u,v ∈ R, let

WOdd :=
∑t2

i=t1

∑

(u,v)∈M (i)
Odd

Ψ
(i)
u,v Φ

(i)
u,v w

(i)
u,v,

WEven :=
∑t2

i=t1

∑

(u,v)∈M (i)
Even

Ψ
(i)
u,v Φ

(i)
u,v w

(i)
u,v,

W :=
∑t2

i=t1

∑

(u,v)∈M (i) Ψ
(i)
u,v Φ

(i)
u,v w

(i)
u,v.

Then for any δ > 0,

Pr
[
|WOdd| > δ + 2max{|E

[
W+

]
|, |E

[
W−] |}

]
6 16 Pr [|W | > δ] ,

where

W+ :=
∑t2

i=t1

∑

(u,v)∈M (i)

Φ
(i)
u,vw

(i)
u,v>0

Ψ
(i)
u,v Φ

(i)
u,vw

(i)
u,v,

W− :=
∑t2

i=t1

∑

(u,v)∈M (i)

Φ
(i)
u,vw

(i)
u,v<0

Ψ
(i)
u,v Φ

(i)
u,vw

(i)
u,v.

In order to apply Lemma 3.2 we first need to bound the expectation:

|E [W]| =
∣
∣
∣
∑t1

i=1

∑

(u,v)∈M (i) E
[

Ψ
(i)
u,v Φ

(i)
u,v

]

eu,vP
[i+1,t2]ew

∣
∣
∣

6
t1

max
i=1

max
(u,v)∈M (i)

∣
∣
∣E
[

Ψ(i)
u,v Φ

(i)
u,v

]∣
∣
∣

·
∣
∣
∣
∑t1

i=1

∑

(u,v)∈M (i) eu,vP
[i+1,t2]ew

∣
∣
∣ .

As we explained before, the last term is at most t1, and for any i ∈ [1, t1]

and (u, v) ∈ M (i), E
[

Ψ
(i)
u,v Φ

(i)
u,v

]

6 (1/2 − α). Thus,

|E [W]| 6 t1 (1/2 − α).

Similarly, |E [W+]| 6 t1 (1/2 − α) and |E [W−]| 6 t1 (1/2 − α).
To apply Hoeffdings bound onW , we bound the sum of the squared ranges

of the involved random variables as follows:

∑t1
i=1

∑

(u,v)∈M (i) Range
[

Ψ
(i)
u,v Φ

(i)
u,v · eu,vP[i+1,t2]ew

]2

6
∑t1

i=1

∑

(u,v)∈M (i)

(
eu,vP

[i+1,t2]ew
)2

=: γ.

Now by Hoeffdings Bound,

Pr [|W | > |E [W] |+ ε] 6 Pr [|W −E [W] | > ε]

6 2 exp

(

−2ε2
/
∑t1

i=1

∑

(u,v)∈M (i) Range
[

Ψ
(ℓ)
u,v Φ

(i)
u,v

(

eu,vP
[i+1,t2]ew

)]2
)

6 2 exp
(
−2ε2/γ

)
.

SMOOTHED ANALYSIS OF BALANCING NETWORKS 17

Choosing ε =
√
γ log n we get Pr

[
|W | > |E [W] |+

√
γ log n

]
6 2n−2.

Hence by Lemma 3.2 we obtain with δ = |E [W] |+
√
γ log n that

Pr
[

|WOdd| > |E [W] |+ 2max{|E
[
W+

]
|, |E

[
W−] |}+

√

γ log n
]

6 16Pr
[

|W | > |E [W] |+
√

γ log n
]

6 32n−2.

As t1 (1/2 − α) is an upper bound on each of |E [W] |, |E [W+] | and
|E [W−] |, this readily implies

Pr
[

|WOdd| > 3 (1/2 − α)t1 +
√

γ log n
]

6 32n−2.

Finally, taking the union bound, we conclude by equation (3) that for all
vertices w ∈ V

Pr

[
∧

w∈V

(∣
∣
∣ξ(t2)w − x(t2)w

∣
∣
∣ 6 3 (1/2 − α)t1 + γ

√

log n
)
]

> 1− 32n−1.

3.3. Proof of Lemma 3.2. Before we begin the proof of Lemma 3.2, we
require the following two technical lemmas.

Lemma 3.3. For 0 6 α 6 1/2, arbitrary wi ∈ R, and independent
random variables Xi that are −1 with probability α and 1 otherwise, let
X :=

∑n
i=1 wiXi. Then,

• If all wi > 0, then Pr [X < 0] 6 1/2,
and for any number δ > 0, Pr [X > δ] > Pr [X < −δ].

• If all wi 6 0, then Pr [X > 0] 6 1/2,
and for any number δ > 0, Pr [X < −δ] > Pr [X > δ].

Proof. Note that it suffices to prove the statement with all wi > 0, as the
case with wi 6 0 follows from the first by considering X ′ :=

∑n
i=1 w

′
iXi

with w′
i := −wi. Let Y :=

∑n
i=1 wiYi where each Yi is an independent and

uniform random variable taking values in {−1,+1} (corresponding toX with
α = 1/2). As Y is a sum of symmetrical distributed random variables, we
have Pr [Y < 0] 6 1/2. Since for any α 6 1/2, X stochastically dominates
Y , we obtain Pr [X < 0] 6 Pr [Y < 0] 6 1/2, and the first claim of the
lemma follows.

The second claim is proven similarly by observing that

Pr [X > δ] > Pr [Y > δ] = Pr [Y < −δ] > Pr [X < −δ] . �

The following lemma bounds the probability that a sum X :=
∑n

i=1 wiXi

deviates by more than a factor two from its expectation.

Lemma 3.4. For 0 6 α 6 1/2, arbitrary wi ∈ Q, and Xi independent
random variables that are −1 with probability α and 1 otherwise, let X :=
∑n

i=1wiXi. Then,

(i) If all wi > 0, then Pr [X > 2E [X]] 6 7/8.

18 SMOOTHED ANALYSIS OF BALANCING NETWORKS

(ii) If all wi 6 0, then Pr [X < 2E [X]] 6 7/8.

Proof. As before, it suffices to prove the first statement. Moreover, we may
focus on the case E [X] 6= 0, as otherwise X is symmetrically distributed
around 0. Finally, we also assume the weights to be integral, that is, wi ∈
Z>0. Rational weights wi ∈ Q>0 can be easily reduced to integral weights by
multiplying all weights with their least common multiple of the denominators
and applying the bound for the integral case.

For the sake of contradiction, suppose that Pr [X > 2E [X]] > 7/8. As
0 6 α 6 1/2, we have E [X] =

∑n
i=1wi(1−2α) > 0 and hence Pr [X 6 0] 6

Pr [X 6 2E [X]] < 1/8. Let k > 2E [X] be such that Pr [X > k] > 1/8,
and Pr [X > k] < 1/8.

As we assumed the weights wi to be integral, we can use the following
two well-known counting tricks:

∑

x>k

xPr [X = x] =
∑

x>k

x∑

y=1

Pr [X = x]

=
∑

y>1

∑

x>max(k,y)

Pr [X = x]

=
∑

x>1

Pr [X > max(k, x)] ,

and similarly,
∑

x6−k −xPr [X = x] =
∑

x>1Pr [X 6 −max(k, x)].
We use both to obtain

∑

x>k

xPr [X = x] =
∑

x>1

Pr [X > max(k, x)]

=
∑

16x<k

Pr [X > k] +
∑

x>k

Pr [X > x]

>
∑

16x<k

(Pr [X 6 0] +Pr [X > k]− 1/8)

+
∑

x>k

Pr [X > x] .

By Lemma 3.3 we now get
∑

x>k

xPr [X = x] > k (Pr [X > k]− 1/8) +
∑

16x<k

Pr [X 6 −x]

+
∑

x>k

Pr [X 6 −x]

= k (Pr [X > k]− 1/8) +
∑

x>1

Pr [X 6 −x]

= k (Pr [X > k]− 1/8) +
∑

x6−1

−xPr [X = x]

SMOOTHED ANALYSIS OF BALANCING NETWORKS 19

Plugging this in the definition of E [X], we get

E [X] =
∑

x

xPr [X = x]

=
∑

x6−1

xPr [X = x] +
∑

06x<k

xPr [X = x] +
∑

x>k

xPr [X = x]

> k (Pr [X > k]− 1/8) +
∑

06x<k

xPr [X = x] .

Using above assumptions on k and Pr [X > 2E [X]] > 7/8 we now arrive at
the desired contradiction,

E [X] > 2E [X] (Pr [X > k]− 1/8) +
∑

2E[X]6x<k

xPr [X = x]

> 2E [X]
(
Pr [X > k]− 1/8 +Pr [2E [X] 6 X < k]

)

> 2E [X] (Pr [X > 2E [X]]− 1/8)

> 3/2E [X] . �

We are now ready to prove Lemma 3.2. In the following, we will use subsums
of W denoted as W+

Even
,W−

Even
,W+

Odd
,W−

Odd
which are defined by combining

the previous definitions in a natural way, e. g.,

W+
Odd

:=
∑t2

i=t1

∑

(u,v)∈M (i)
Odd

Φ
(i)
u,vw

(i)
u,v>0

Ψ
(i)
u,v Φ

(i)
u,vw

(i)
u,v.

Let M [t1,t2] =
⋃t2

i=t1
M (i) be the set of all matching edges in the given time

span. Let M
[t1,t2]
Odd

be the set of all odd ones. Moreover, let us simply write

M for a particular assignment of Odd(.) for all balancers in M [t1,t2]. We now
begin by bounding WOdd in terms of W . By the definition of conditional
probability and the law of total probabilities, it follows for arbitrary δ1, δ2 ∈
R,

Pr [W < δ2 | WOdd > δ1] =
Pr [W < δ2 ∧WOdd > δ1]

Pr [WOdd > δ1]

6
Pr [W −WOdd < δ2 − δ1 ∧WOdd > δ1]

Pr [WOdd > δ1]

=
∑

M

Pr
[

M
[t1,t2]
Odd

= M
]

Pr
[

WEven < δ2 − δ1 ∧WOdd > δ1 | M [t1,t2]
Odd

= M
]

Pr [WOdd > δ1]
.

Note that for fixed M, the ranges of WOdd and WEven are determined and
therefore the probability spaces are disjoint. This implies that WOdd and

WEven are independent conditioned on M
[t1,t2]
Odd

= M. Using this observation,

20 SMOOTHED ANALYSIS OF BALANCING NETWORKS

we get

Pr [W < δ2 | WOdd > δ1]

6
∑

M
Pr
[

M
[t1,t2]
Odd

= M
]

(∗)
︷ ︸︸ ︷

Pr
[

WEven < δ2 − δ1 | M [t1,t2]
Odd

= M
]

(4)

·Pr
[

WOdd > δ1 | M [t1,t2]
Odd

= M
]/

Pr [WOdd > δ1] .

By plugging δ2 := δ + 2 E [W−] and δ1 := δ in (*) we obtain

Pr
[

WEven < 2 E
[
W−] | M [t1,t2]

Odd
= M

]

= 1−Pr
[

WEven > 2 E
[
W−] | M [t1,t2]

Odd
= M

]

6 1−Pr
[

W+
Even

> 0 | M [t1,t2]
Odd

= M
]

·Pr
[

W−
Even

> 2 E
[
W−] | M [t1,t2]

Odd
= M

]

.

Observing that E [Ψu,v] = E
[

Ψu,v | M [t1,t2]
Odd

= M
]

for (u, v) ∈ M
(i)
Even

, we get

E [W−] 6 E
[

W−
Even

| M [t1,t2]
Odd

= M
]

and hence by Lemmas 3.3 and 3.4,

Pr
[

WEven < 2 E
[
W−] | M [t1,t2]

Odd
= M

]

6 1−Pr
[

W+
Even

> 0 | M [t1,t2]
Odd

= M
]

·

Pr
[

W−
Even

> 2 E
[

W−
Even

| M [t1,t2]
Odd

= M
]

| M [t1,t2]
Odd

= M
]

6 1− 1
2 · 1

8 = 15
16 .(5)

Plugging this into equation (4) yields

Pr
[
W < δ + 2E

[
W−] | WOdd > δ

]

6
15

16

∑

M

Pr
[

M
[t1,t2]
Odd

= M
]

Pr
[

WOdd > δ1 | M [t1,t2]
Odd

= M
]

Pr [WOdd > δ1]
=

15

16
,

and hence

Pr
[
W > δ + 2E

[
W−]]

> Pr
[
W > δ + 2E

[
W−] ∧WOdd > δ

]

= Pr [WOdd > δ] ·Pr
[
W > δ + 2E

[
W−] | WOdd > δ

]

> 1
16 ·Pr [WOdd > δ] .(6)

SMOOTHED ANALYSIS OF BALANCING NETWORKS 21

It remains to lower bound the deviation of WOdd in terms of W in a similar
fashion. As before, we derive

Pr [W > δ2 | WOdd 6 δ1]

6
∑

M
Pr
[

M
[t1,t2]
Odd

= M
]

(∗)
︷ ︸︸ ︷

Pr
[

WEven > δ2 − δ1 | M [t1,t2]
Odd

= M
]

(7)

·Pr
[

WOdd 6 δ1 | M [t1,t2]
Odd

= M
]/

Pr [WOdd 6 δ1] .

We now choose δ2 := −δ + 2 E [W+] , and δ1 := −δ. As before in equa-
tion (5), we can now use Lemmas 3.3 and 3.4 to get for (*) that

Pr
[

WEven > 2 E
[
W+

]
| M [t1,t2]

Odd
= M

]

6 15
16 .

Plugging this into equation (7) yields

Pr
[
W > −δ + 2E

[
W+

]
| WOdd 6 −δ

]
6 15/16

and hence

Pr
[
W 6 −δ + 2E

[
W+

]]

> Pr
[
W 6 −δ + 2E

[
W+

]
∧WOdd 6 −δ

]

= Pr [WOdd 6 −δ] ·Pr
[
W 6 −δ + 2E

[
W+

]
| WOdd 6 −δ

]

> 1
16 ·Pr [WOdd 6 −δ] .(8)

Combining equation (6) and equation (8), we have shown for any δ > 0,

Pr [|WOdd| > δ]

= Pr [WOdd > δ] +Pr [WOdd 6 −δ]

6 16 Pr
[
W > δ + 2E

[
W−]]+ 16 Pr

[
W 6 −δ + 2E

[
W+

]]

6 16 Pr
[
|W | > δ − 2max{|E

[
W+

]
|, |E

[
W−] |}

]
.

Adding 2max{|E [W+] |, |E [W−] |} to δ gives the assertion of the lemma.

4. Deriving the Upper Bound for the Periodic Case

Consider the network after 2 log(Kn)
1−λ(Q) (periodic) repetitions of the balancing

network (each repetition consists of d rounds, so the network consists of

a total of T = d · 2 log(Kn)
1−λ(Q) matchings). Q is the so-called round matrix

corresponding to the application of d consecutive matchings (recall that

we use the following abbreviations P[t1,t2] =
∏t2

i=t1
P(i)). This is indeed a

special case of our general scheme where the matrices P(1),P(2), . . . ,P(T) are
applied, but now Q = P[1,d] = P[d+1,2d] and so on. Recall the notation that
eu,v denotes the row-vector with +1 at u-th column and −1 at v-th column.

In Theorem 1.1 we plug t2 = T = 2d log(Kn)
1−λ(Q) and t1 = T − 2d log log(n)

1−λ(Q) . Hence,

22 SMOOTHED ANALYSIS OF BALANCING NETWORKS

Λ1 = max
w∈V

√

log n
∑t1

i=1

∑

(u,v)∈M (i)

(
eu,vP

[i+1,t2]ew
)2

.

Let v
(i)
1 , v

(i)
2 , . . . , v

(i)
n be the eigenvectors of P[i+1,t2] forming an orthogonal

basis of Rn and let λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
n be the corresponding eigenvalues. Since

P[i+1,t2] is a stochastic matrix, v
(i)
1 = 1. Write ew =

∑n
j=1 c

(i)
j v

(i)
j . Using

this, we rewrite Λ1 as follows (for short we drop the “maxw” part as our
final result will not depend on w),

Λ1 =

√

log n
∑t1

i=1

∑

(u,v)∈M (i)

(

eu,vP
[i+1,t2]

∑n
j=1 c

(i)
j v

(i)
j

)2

=

√

log n
∑t1

i=1

∑

(u,v)∈M (i)

(

eu,v
∑n

j=1 c
(i)
j λ

(i)
j v

(i)
j

)2
.

Observe that eu,v is orthogonal to v
(i)
1 . Therefore c

(i)
1 = 0 for every i which

gives

Λ1 =

√

log n
∑t1

i=1

∑

(u,v)∈M (i)

(

eu,v
∑n

j=2 c
(i)
j λ

(i)
j v

(i)
j

)2
.

Define a vector z(i) :=
∑n

j=2 c
(i)
j λ

(i)
j v

(i)
j . The latter is then

Λ1 =

√

log n
∑t1

i=1

∑

(u,v)∈M (i)

(
eu,vz

(i)
)2

=

√

log n
∑t1

i=1

∑

(u,v)∈M (i)

(

z
(i)
u − z

(i)
v

)2

6

√

log n
∑t1

i=1

∑

(u,v)∈M (i) 2(z
(i)
u)2 + 2(z

(i)
v)2 .

Since M (i) is a matching, for each i each vertex is counted only at most
once, thus

(9) Λ1 6 2

√

log n
∑t1

i=1 ‖z(i)‖2 .

By standard calculation (cf. Section 3.1), we have

‖z(i)‖2 6 λ(P[i+1,t2])2 · ‖ew‖2 = λ(P[i+1,t2])2.

Plugging this into (9) and using the facts that for any two stochastic matrices
A and B, λ(AB) 6 λ(A) and for any integer k, λ(Ak) = λ(A)k,

Λ1 6 2

√

log n
∑t1

i=1 λ(P
[i+1,t2])2

6 2

√

log n
∑t1

i=1 λ(Q
⌊(t2−(i+1))/d⌋)2 .

Regrouping the matrices according to the periods the latter reduces to

Λ1 6

√

log n
∑t1/d

i=1 dλ(Q)2(t2/d−(i+1)) .

SMOOTHED ANALYSIS OF BALANCING NETWORKS 23

With ρ = ((t2 − t1)/d) − 1, we can upper bound Λ1 by

2
√

log n d
∑∞

i=ρ λ(Q)2i 6 2

√

log n d
λ(Q)2ρ

1− λ(Q)2
.

Plugging in our choices for t1 and t2 we end up with

Λ1 6 2

√

d log n
λ(Q)−1+4 log logn/(1−λ(Q))

1− λ(Q)2

6 2

√

d log n
exp(−3 log log n)

1− λ(Q)2

6 2
1

log n

√

d
1

1− λ(Q)2

6
2
√
d

log n
· 1

1− λ(Q)
.

With the same arguments, we get

Λ2 6 λ(P[1,t2])
√
nK 6

√
nK/(Kn)2.

Plugging all this into Theorem 1.1 shows that at step T = 2 log(Kn)
1−λ2(P) the

discrepancy is at most

2d log log n

1− λ(Q)
+

3(1/2 − α) · 2d log(Kn)

1− λ(Q)
+

2
√
d

log n
· 1

1− λ(Q)
+

√
nK

(Kn)2

= O
(
d log(Kn)

1− λ(Q)
·
(
1

2
− α

)

+
d log log n

1− λ(Q)

)

.

5. Deriving the Upper Bound for CCCn

In Theorem 1.1 we choose t2 = log n and t1 = log n − log log n. For
matrix multiplication we use the following abbreviated form: P[i,j] :=
P(i)P(i+1) · · ·P(j). First we observe that

• P
[k,t2]
u,v = 2k/n if wires u and v are at distance 6 log n− k and differ

only in the last log n− k bits (in their binary representation),

• otherwise, P
[k,t2]
u,v = 0.

24 SMOOTHED ANALYSIS OF BALANCING NETWORKS

15

20

n
c
y
 o

f
C
C
C
3
0

0

5

10

0 0.1 0.2 0.3 0.4 0.5

a
v
e
r
a
g
e
 d

is
c
r
e
p
a
n

parameter

Figure 2. Discrepancy for various α-values of CCC230 with random uniformly dis-
tributed input from {0, 1, 2, . . . , 230 − 1}. α = 0 corresponds to the adversarial
model while α = 1/2 is the completely random model. The dotted line describes
the experimental results, the broken lines are our theoretical lower and upper
bounds.

In particular this shows that P[1,t2] is equal to the all-
(
1
n

)
matrix and thus

λ
(
P[1,t2]

)
= 0 (that is, Λ2 = 0). Moreover, for any fixed wire w,

Λ1 =

√

log n
∑logn−log logn

i=1

∑

(u,v)∈M (i)

(
eu,v

(
P[i+1,t2]

)
ew
)2

=

√

log n
∑logn−log logn

i=1

∑

(u,v)∈M (i)

(

P
[i+1,t2]
u,w −P

[i+1,t2]
v,w

)2

6

√

log n
∑logn−log logn

i=1
n
2i

(
2i+1

n

)2

= 4

√

log n
∑logn−log logn

i=1
2i

n

6 4

√

log n · 2

log n

= O(1).

6. Experimental Result

We examined experimentally how well a CCC balances a random input.
We implemented a CCC230 consisting of roughly one billion wires and thirty
billion balancers. The input was chosen independently uniformly at random
from {0, 1, 2, . . . , 230 − 1}. For initial directions of the balancers all up and
different values α between 0 and 1/2 we measured the resulted discrepancy.

Figure 2 presents the average over 100 runs, together with theoretical
lower and upper bounds. As the input is random, the so-far presented
bounds can be tightened. Following the same lines of proof, one can easily
show the following slightly better bounds on the expected discrepancy ∆ in
the random-input case:

SMOOTHED ANALYSIS OF BALANCING NETWORKS 25

• ∆ 6 (12 − α) · (log n− ⌈log log n⌉) + ⌈log log n⌉+ 4,

• ∆ > max{(1/2 − α) log n, 1/2 (1 − 1
n) (⌊log log n⌋ − 1)}.

As these bounds are only used for visualization in Figure 2 and the proofs
are very similar to the above, they are omitted.

References

[1] D. Arthur and S. Vassilvitskii. Worst-case and smoothed analysis of
the icp algorithm, with an application to the k-means method. In 47th
IEEE Symp. on Found. of Comp. Science (FOCS’06), pages 153–164,
2006.

[2] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. J. of the
ACM, 41(5):1020–1048, 1994.

[3] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[4] T. Bohman, A. Frieze, and R. Martin. How many random edges make
a dense graph hamiltonian? Random Structures and Algorithms, 22(1):
33–42, 2003.

[5] A. Coja-Oghlan, U. Feige, A. M. Frieze, M. Krivelevich, and D. Vi-
lenchik. On smoothed k-CNF formulas and the walksat algorithm. In
20th ACM-SIAM Symp. on Discrete Algorithms (SODA’09), pages 451–
460, 2009.

[6] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced
sorting network. J. of the ACM, 36(4):738–757, 1989.

[7] U. Feige. Refuting smoothed 3CNF formulas. In 48th IEEE Symp. on
Found. of Comp. Science (FOCS’07), pages 407–417, 2007.

[8] A. Flaxman and A. Frieze. The diameter of randomly perturbed di-
graphs and some applications. Random Structures and Algorithms, 30:
484–504, 2007.

[9] T. Friedrich and T. Sauerwald. Near-perfect load balancing by random-
ized rounding. In 41st Annual ACM Symposium on Theory of Comput-
ing (STOC’09), pages 121–130, 2009.

[10] T. Friedrich, T. Sauerwald, and D. Vilenchik. Smoothed analysis of bal-
ancing networks. In 36th International Colloquium on Automata, Lan-
guages, and Programming (ICALP’09), volume 5556 of Lecture Notes
in Computer Science, pages 472–483. Springer, 2009.

[11] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[12] M. Herlihy and S. Tirthapura. Randomized smoothing networks. J.
Parallel and Distributed Computing, 66(5):626–632, 2006.

[13] M. Herlihy and S. Tirthapura. Self-stabilizing smoothing and counting
networks. Distributed Computing, 18(5):345–357, 2006.

[14] M. Krivelevich, B. Sudakov, and P. Tetali. On smoothed analysis in
dense graphs and formulas. Random Structures and Algorithms, 29(2):
180–193, 2006.

26 SMOOTHED ANALYSIS OF BALANCING NETWORKS

[15] B. Manthey and R. Reischuk. Smoothed analysis of binary search trees.
Theoret. Computer Sci., 378(3):292–315, 2007.

[16] M. Mavronicolas and T. Sauerwald. The impact of randomization in
smoothing networks. In 27th Annual ACM Principles of Distributed
Computing (PODC’08), pages 345–354, 2008.

[17] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of Markov
chains and the analysis of iterative load balancing schemes. In
39th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’98), pages 694–705, 1998.

[18] H. Röglin and B. Vöcking. Smoothed analysis of integer programming.
Math. Program., 110(1):21–56, 2007.

[19] D. Spielman and S. Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. of the ACM, 51
(3):385–463, 2004.

[20] R. Vershynin. Beyond hirsch conjecture: Walks on random polytopes
and smoothed complexity of the simplex method. In 47th IEEE Symp.
on Found. of Comp. Science (FOCS’06), pages 133–142, 2006.

	1. Introduction
	1.1. Balancing (smoothing) networks
	1.2. Smoothed analysis
	1.3. The Model
	1.4. Our Contribution
	1.5. Paper's Organization

	2. Proof of the Lower Bound
	2.1. Proof of (.45cm12-)logn - 2loglogn
	2.2. Proof of (1-o(1))loglogn /2
	2.3. Proof of Lemma ??

	3. Proof of the Upper Bound
	3.1. Proof of Proposition ??: Bounding "026B30D (t2)-1"026B30D
	3.2. Proof of Proposition ??: Bounding "026B30D y(t2)-(t2)"026B30D
	3.3. Proof of Lemma ??

	4. Deriving the Upper Bound for the Periodic Case
	5. Deriving the Upper Bound for CCCn
	6. Experimental Result
	References

