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Abstract

We examine several online matching problems, with applications to Internet advertising reservation
systems. Consider an edge-weighted bipartite graphG, with partite setsL, R. We develop an8-competitive
algorithm for the following secretary problem: Initially given R, and the size ofL, the algorithm receives
the vertices ofL sequentially, in a random order. When a vertexl ∈ L is seen, all edges incident tol are
revealed, together with their weights. The algorithm must immediately either matchl to an available vertex
of R, or decide thatl will remain unmatched.

In [4], the authors show a 16-competitive algorithm for the transversal matroid secretary problem, which
is the special case with weights on vertices, not edges. (Equivalently, one may assume that for eachl ∈ L,
the weights on all edges incident tol are identical.) We use a similar algorithm, but simplify andimprove
the analysis to obtain a better competitive ratio for the more general problem. Perhaps of more interest is
the fact that our analysis is easily extended to obtain competitive algorithms for similar problems, such as to
find disjoint sets of edges in hypergraphs where edges arriveonline. We also introduce secretary problems
with adversarially chosengroups.

Finally, we give a2e-competitive algorithm for the secretary problem on graphic matroids, where, with
edges appearing online, the goal is to find a maximum-weight acyclic subgraph of a given graph.
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1 Introduction

Many optimization problems of interest can be phrased as picking a maximum-weight independent subset from
a ground set of elements, for a suitable definition of independence. A well-known example is the (Maximum-
weight) Independent Set problem on graphs, where we wish to find a set of vertices, no two of which are
adjacent. A more tractable problem in this setting is the Maximum-weight Matching problem, in which we
wish to find a set of edges such that no two edges share an endpoint. This notion of independence can be
naturally extended to hypergraphs, where a set of hyperedges is considered independent if no two hyperedges
share a vertex.

In the previous examples, independent sets are characterized by forbidding certainpairs of elements from
the ground set. A somewhat related, but different notion of independence comes from the independent sets of
a matroid. For example, in the uniform matroid of rankk, any set of at mostk elements is independent. For
graphic matroids, a set of edges in an undirected graph is independent if and only if it does not contain a cycle;
the optimization goal is to find a maximum-weight acyclic subgraph of a graphG. In transversal matroids, a
set of left-vertices of a bipartite graph is independent if and only if there is a matching that matches each vertex
in this set to some right-vertex.

In many applications, the elements of the ground set and their weights are not known in advance, but arrive
online one at a time. When an item arrives, we must immediately decide to either irrevocably accept it into the
final solution, or reject it and never be able to go back to it again. We will be interested in competitive analysis,
that is, comparing the performance of an online algorithm toan optimal offline algorithm which is given the
whole input in advance. In this setting, even simple problems like selecting a maximum-weight element become
difficult, because we do not know if elements that come in the future will have weight significantly higher or
lower than the element currently under consideration. If wemake no assumptions about the input, any algorithm
can be fooled into performing arbitrarily poorly by oferingit a medium-weight item, followed by a high-weight
item if it accepts, and a low-weight item if it rejects. To solve such problems, which frequently arise in practice,
various assumptions are made. For instance, one might assume that weights are all drawn from a known
distribution, or (if independent sets may contain several elements) that the weight of any single element is small
compared to the weight of the best independent set.

One useful assumption that can be made is that the elements ofthe ground set appear in a random order.
The basic problem in which the goal is to select the maximum-weight element is well known as theSecretary
Problem. It was first published by Martin Gardner in [6], though it appears to have arisen as folklore a decade
previously [5]. An optimal solution is to observe the firstn/e elements, and select the first element from the
rest with weight greater than the heaviest element seen in the first set; this algorithm gives a1/e probability of
finding the heaviest element, and has been attributed to several authors (see [5]).

Motivated by this simple observation, several results haveappeared for more complex problems in this
random permutation model; these are often called secretary-type problems. Typically, given a random permu-
tation of elements appearing in an online fashion, the goal is to find a maximum-weight independent set. For
example, Kleinberg [7] gives a1 + O(1/

√
k)-competitive algorithm for the problem of selecting at mostk

elements from the set to maximize their sum. Babaioffet al. [2] give a constant-competitive algorithm for the
more general Knapsack secretary problem, in which each element has a size and weight, and the goal is to find
a maximum-weight set of elements whose total size is at most agiven integerB.

Babaioff et al. [1] had earlier introduced the so-calledmatroid secretary problem, and gave anO(log k)-
competitive algorithm to find the max-weight independent set of elements, wherek is the rank of the underlying
matroid. A16-competitive algorithm was also given in [1] for the specialcase of graphic matroids; this was
based on their4d-competitive algorithm algorithm for the important case oftransversal matroids, whered is
the maximum degree of any left-vertex. Recently, Dimitrov and Plaxton [4] improved the latter to a ratio of16
for all transversal matroids. A significant open question iswhether there exists aO(1)-competitive algorithm
for general matroids, or for other secretary problems with non-matroid constraints.
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These secretary-type problems arise in many practical situations where decisions must be made in real-time
without knowledge of the future, or with very limited knowledge. For example, a factory needs to decide which
orders to fulfil, without knowing whether more valuable orders will be placed later. Buyers and sellers of houses
must decide whether to go through with a transaction, thoughthey may receive a better offer in a week or a
month. Below, we give an example from online advertising systems, which we use as a recurring motivation
through the paper.

Internet-based systems are now being used to sell advertising space in other media, such as newspapers,
radio and television broadcasts, etc. Advertisers in thesemedia typically plan advertising campaigns and reserve
slots well in advance to coincide with product launches, peak shopping seasons, or other events. In such
situations, it is unreasonable to run an auction immediately before the event to determine which ads are shown,
as is done for sponsored search and other online advertising.

Consider an automatic advertising reservation system, in which the seller controls a number ofslots, each
representing a position in which an advertisement (hereafter ad) can be published. Advertisers/Bidders appear
periodically, and report which slots they would like to place an ad in, and how much they are willing to pay for
each slot. When an advertiser reports a bid, the system must immediately decide whether or not to accept it; if a
bid is accepted, the admustbe placed in the corresponding slot, and if not, the ad is permanently rejected. Note
that in disallowing the removal of an accepted ad, our model differs significantly from that of [3], in which the
seller can subsequently remove an accepted ad if he makes a compensatory payment to the advertiser.

We model this system as as an online edge-weighted matching problem on a bipartite graphG(L ∪R,E):
the vertices of setR correspond to the set of slots, and those of setL to the ads. For each vertexl ∈ L, its
neighbors inR correspond to the slots in which adl can appear, and the weight of edge(l, r) is the amount
the advertiser is willing to pay ifl appears in slotr. Initially, the seller knows the set of slotsR; vertices ofL
appear sequentially in a random order, as advertisers bid onslots. When a vertexl ∈ L is seen, all the edges
from l to R are revealed, together with their weights; the seller must immediately decide whether to accept ad
l, and if so, which of the relevant slots to place it in. The seller’s goal, obviously, is to maximize his revenue.
Subsequently, we refer to this problem as Bipartite Vertex-at-a-time Matching (BVM). We describe our results
for BVM and other problems below.

1.1 Results and Outline

Recall that the elements of a transversal matroid are one partite setL (subsequently referred to as theleft
vertices) of a bipartite graph, and a set of verticesS ⊆ L is independent if the graph constains a perfect
matching fromS to the other partite set. That is, the transversal matroid secretary problem is equivalent to the
special case of BVM in which all edges incident to eachl ∈ L have the same weight. (Equivalently, the weights
are on vertices ofL instead of edges.) In Section 2, we give a simpler and tighteranalysis for an algorithm
essentially similar to that of Dimitrov and Plaxton [4] for transversal matroids; this allows us to improve the
competitive ratio from 16 to 8, even for the more general BVM problem.

In addition to an improved ratio, our methods are of interestas they appear robust to changes in the model
and can be naturally applied to more general problems. We illustrate this in Section 3 by extending our algo-
rithms to hypergraph problems, with applications to more complex advertising systems in which advertisers
desirebundlesof slots, as opposed to a single slot. In particular, we obtain constant-competitive algorithms for
finding independent edge sets in hypergraphs of constant edge-size.

We also introduce secretary problems withgroups, to model applications in which we do not see a truly
random permutation of elements. We assume that an adversarycan group the elements arbitrarily, but once
the groups are constructed, they appear in random order. When a group appears, the algorithm can see all the
elements in the group. We discuss this idea further in Section 4.

Finally, in Section 5, we obtain a simple2e-competitive algorithm for the problem of finding independent
edge-sets in graphic matroids, improving the ratio of 16 from [1].
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The majority of our algorithms follow the “sample-and-price” method common to many solutions to sec-
retary problems. That is, we look at a random sample of elements containing a constant fraction of the input,
and use the values observed to determinepricesor thresholds. In the second half, we accept an element if its
weight/value is above the given price. For instance, in the optimal solution to the original secretary problem,
the price is set to be the highest value seen in the first1/e fraction of the input, and we accept any element from
the remaining set with value greater than this price.

2 The Bipartite Vertex-at-a-time Matching Problem

Recall that in the BVM problem, the algorithm is initially given one partite setR of a bipartite graphG(L ∪
R,E), together with the size of the other partite setL. The algorithm sees the vertices ofL sequentially, in a
random order. When a vertexl ∈ L is seen, all edges incident tol are revealed, together with their weights. The
algorithm must immediately either matchl to an available vertex ofR, or decide thatl will remain permanently
unmatched. In this section, we show that an algorithm based on that of [4] gives a competitive ratio of 8 for this
problem. Before presenting the algorithm for BVM, we describe a closely related algorithm SIMULATE that is
easier to analyze, and then show that our final algorithm doesat least as well as SIMULATE .

Let GREEDY denote the following greedy algorithm for the offline Edge-weighted bipartite matching problem:

GREEDY(G(L ∪R,E)):
Sort edges ofE in decreasing order of weight.
MatchingM ← ∅
For each edgee ∈ E, in sorted order

If M ∪ e is a matching:
M ←M ∪ e

ReturnM .

Let w(F ) denote the weight of a set of edgesF , and OPT denote the weight of an optimum (max-weight)
matching onG. It is easy to see the following proposition, that GREEDY is a 2-approximation.

Proposition 2.1 w(M) ≥ OPT/2.

We now describe the algorithm SIMULATE , which we use purely to analyze our final algorithm for BVM.

SIMULATE :
Sort edges ofG(L ∪R,E) in decreasing order of weight.
M1,M2 ← ∅
Mark each vertexl ∈ L as unassigned.
For each edgee = (l, r) ∈ E, in sorted order

If l is unassignedAND M1 ∪ e is a matching:
Mark l as assigned
Flip a coin with probabilityp of heads
If heads,M1 ←M1 ∪ e
ElseM2 ←M2 ∪ e

M3 ←M2

For each vertexr ∈ R
If r has degree> 1 in M3

Delete all edges incident tor from M3.

Say that an edgee is consideredby SIMULATE if we flip a coin and assigne to eitherM1 or M2. We make
two observations about SIMULATE : Once any edge incident to a vertexl ∈ L has been considered, no other
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edge incident tol will be considered later. Second, once an edge incident tor ∈ R has been added toM1, no
subsequent edge incident tor will be considered. (Note that multiple edges incident tor might be considered
until one of these edges is added toM1.)

Observe that from our description of SIMULATE , M1 is a matching, butM2 may not be, as a vertexr ∈ R
may be incident to multiple edges ofM2. Hence, we have a final pruning step in case there are multipleedges
incident to the same vertex ofR; this gives us a matchingM3. We now prove three statements about SIMULATE ,
and later show that the matching returned by our online algorithm is at least as good asM3.

Proposition 2.2 E[w(M1)] ≥ pOPT/2.

Proof: SIMULATE tosses a coin (at most) once for each vertex inL; M1 is precisely the matching one would
obtain from running GREEDY on L′ ∪ R, whereL′ denotes the vertices which came up heads. (If the coin for
a vertex comes up tails, this vertex has no effect onM1.) If OPT′ denotes the weight of an optimum matching
onL′ ∪R, it is easy to see thatE[OPT′] ≥ pOPT, and hence thatE[w(M1)] ≥ pOPT/2. 2

Lemma 2.3 E[w(M2)] ≥ (1− p)OPT/2.

Proof: Consider any history of coin tosses in which an arbitrary edge e is being considered, and we are about
to flip a coin to determine whethere is added toM1 or M2. Its expected contribution toM1 is pw(e), and to
M2, is (1− p)w(e). This holds for each edgee and any history in whiche can contribute to the weight ofM1

or M2; henceE[w(M2)] = (1−p)
p

E[w(M1)], completing the proof. 2

Lemma 2.4 E[w(M3)] ≥ p2(1−p)
2 OPT.

Proof: For each vertexv ∈ R, let Revenue2(v) denote the revenue earned by vertexv in M2, which we define
as the sum of the weights of edges inM2 incident tov. (Hence,

∑

v Revenue2(v) = w(M2).) For each edge
e incident tov, let E[Revenue2(v)|e] denote the expected revenue earned byv in M2, conditioned on the fact
thate is the first edge incident tov selected by SIMULATE for M2. It is easy to see thatE[Revenue2(v)|e] ≤
w(e)/p, by considering howv can earn revenue: If the next edge incident tov considered by SIMULATE is
added toM1 (which happens with probabilityp), thenv earns preciselyw(e), as no later edge incident tov
can ever be considered. In general, ifv is incident toi edges inM2, the revenue it earns is at mostiw(e),
and the probability of this event is at most(1 − p)i−1 · p; this is because the nexti − 1 edges incident tov
that are considered must be added toM2, and theith edge is added toM1. Therefore,E[Revenue2(v)|e] ≤
w(e)

∑∞
i=1 i · p(1− p)i−1 = w(e)/p.

Similarly, for each vertexv ∈ R, letRevenue3(v) denote the revenue earned by vertexv in M3, which is the
weight of the (at most one) edge incident tov in M3. LetE[Revenue3(v)|e] denote the expected revenue earned
by v, conditioned one being the first edge incident tov added toM2. With probabilityp, the next considered
edge incident tov is added toM1, and hencev has degree 1 inM2. Therefore,E[Revenue3(v)|e] ≥ pw(e),

and soE[Revenue3(v)|e] ≥ p2
E[Revenue2(v)|e]; it follows thatE[w(M3)] ≥ p2

E[w(M2)] = p2(1−p)
2 OPT.

2

Before describing our final algorithm for EBP, we show that the matching returned by an intermediate
algorithm SAMPLEANDPERMUTE is at least as good asM3, which implies that we have a 2

(1−p)p2 -competitive

algorithm: settingp = 2/3, we get a13.5-competitive algorithm. However, our pruning step allows us to take
an edge forM3 only if its right endpoint has degree 1; a more careful pruning step allows more edges in the
matching. We use this fact to give a tighter analysis for the next algorithm, obtaining a competitive ratio of 8.

Note that the matchingM1 in SAMPLEANDPERMUTE is precisely the same asM1 from SIMULATE ; in-
tuitively, in the former, we toss all the coins at once and runGREEDY, while in the latter, we toss coins while
constructing the Greedy Matching. (More precisely, the twoalgorithms to generate the matchings are equiv-
alent.) Similarly, the “matching”M2 in this algorithm is essentiallyM2 from SIMULATE . The difference
between the two algorithms is in the pruning step: To construct M3 in SIMULATE , we delete all edges incident
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SAMPLEANDPERMUTE(G(L ∪R,E)):
L′ ← ∅
For eachl ∈ L:

With probabilityp, L′ ← L′ ∪ {l}
M1 ← GREEDY(G[L′ ∪R]).
For eachr ∈ R:

Setprice(r) to be the weight of the edge incident tor in M1.
M,M2 ← ∅
For eachl ∈ L− L′, in random order:

Let e = (l, r) be the highest-weight edge such thatw(e) ≥ price(r)
Add e to M2.
If M ∪ e is a matching, adde to M .

to any vertexr ∈ R with degree greater than 1; in SAMPLEANDPERMUTE, we add toM the first such edge
seen in our permutation ofL−L′. It follows immediately from Lemma 2.4 thatE[w(M)] ≥ p2(1− p)OPT/2,
but accounting for the difference in pruning allows the following tighter statement, which we prove in the
appendix.

Lemma 2.5 E[w(M)] ≥ p(1−p)
2 OPT.

We now present our final algorithm, a trivial modification of SAMPLEANDPERMUTE for the online BVM
problem. SAMPLEANDPRICE(|L|, R)

k ← Binom(|L|, p)
Let L′ be the firstk vertices ofL.
M1 ← GREEDY(G[L′ ∪R]).
For eachr ∈ R:

Setprice(r) to be the weight of the edge incident tor in M1.
M ← ∅
For each subsequentl ∈ L− L′, :

Let e = (l, r) be the highest-weight edge such thatw(e) ≥ price(r)
If M ∪ e is a matching, accepte for M .

As the input to SAMPLEANDPRICE is a random permutation,L′ is a subset ofL in which each vertex of
L is selected with probabilityp; it is easy to see that this algorithm is equivalent to SAMPLEANDPERMUTE.
Therefore,E[w(M)] ≥ p(1−p)

2 OPT; settingp = 1/2 implies that the expected competitive ratio is 8.

3 Independent Edge Sets in Hypergraphs

In the Hypergraph Edge-at-a-time Matching (HEM) problem, we are initally given the vertex set of a hyper-
graph; subsequently, hyperedges appear in a random order. When an edge (together with its weight) is revealed,
the algorithm must immediately decide whether or not to accept it; as before, the goal is for the algorithm to
select a maximum-weight set of disjoint edges. For arbitrary hypergraphs, one can observe that even the offline
version of this problem is NP-Complete (and also hard to approximate) via an easy reduction from the Inde-
pendent Set problem. However, the difficulty is related to the size of the hyperedges; if all edges contain only
2 vertices, for instance, then we are simply trying to find a matching in a (possibly non-bipartite) graph. (Even
in this special case, the problem is of interest in an online setting.) Letd denote the maximum size of an edge
in the hypergraph.
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We provide anO(d2)-competitive algorithm for the HEM problem by solving the more general Hypergraph
Vertex-at-a-time Matching (HVM) problem, described as follows: We are initally given a subsetR of the
vertex set of a hypergraph. The remaining verticesL arrive online; each edge of the hypergraph is constrained
to contain exactly one vertex ofL, together with some vertices ofR. The vertices ofL appear online in a
random order; whenl ∈ L is revealed, the algorithm also sees all edges incident tol, together with their weight.
At this point, the algorithm must immediately decide whether or not to accept some edge containingl, and if
so, which edge; again, the goal is for the algorithm to selecta maximum-weight set of disjoint edges. Here,
let d denote the maximum number of vertices ofR contained in a single edge (so the largest edge hasd + 1
vertices). First, we observe that the HEM problem with edge size d reduces to the HVM problem with edge
sized + 1: Let R be the vertex set of the original hypergraph, and add one vertex toL for each original edge.
An edge of the new hypergraph consists of an old edge, together with the corresponding vertex ofL. Clearly,
observing a random permutation ofL together with the incident edges is equivalent to a random permutation
of the edge set of the original hypergraph. Also, notice thatthe the BVM problem of Section 2 is simply the
special case of HVM whend = 1. (See Figure 1 at the end of this section.)

These hypergraph problems capture the notion of demandbundles. For instance, in ad reservation systems,
advertisers rarely make reservations for a single ad at a time; they are more likely to plan advertising campaigns
involving multiple individual ads. In many campaigns, advertisers create various ads which are related to and
complement or reinforce each other; these advertisers might be interested in acquiring a bundle or set of slots
for this campaign. They submit to the reservation system thebundles they are interested in, together with the
price they are willing to pay; the system must either accept arequest for an entire bundle or reject it, as it
does not receive revenue for providing the advertiser with apart of the bundle. If each advertiser submits a
request for a single bundle, we obtain the HEM problem with vertex set corresponding to the set of slots. More
generally, an advertiser may submit a request forone ofa set of bundles, together with a price for each bundle.
(For example, an advertiser might want an ad to appear in any three out of four local newspapers.) This leads
to the HVM problem, with vertex setL corresponding to the set of advertisers, and setR to the set of slots: We
receive a random permutation of advertisers, and each advertiser informs us of the bundles she is interested in,
together with a price for each bundle.

Let GREEDY denote the offline algorithm for HVM that sorts edges in decreasing order of weight, and
selects an edge if it is disjoint from all previously selected edges. For ease of exposition, we subsequently
assume that the hypergraph is(d + 1)-uniform; that is, that each edge contains exactlyd vertices ofR together
with one vertex ofL.

Proposition 3.1 GREEDY returns a(d + 1)-approximation to the maximum-weight disjoint edge set.

We again define an algorithm SIMULATE , as in Section 2:

Sort edges ofE in decreasing order of weight.
Mark each vertexl ∈ L as unassigned.
M1,M2 ← ∅
For each edgee ∈ E in sorted order:

Let l be the vertex ofL in e
If l is unassignedAND e is disjoint fromM1:

Mark l as assigned.
Flip a coin with probabilityp of heads
If heads, adde to M1

If tails, adde to M2

M3 ← ∅
For eache ∈M2:

Add e to M3 if e is disjoint from the rest ofM2.

6



As before, we letw(F ) denote the weight of an edge setF . The proofs of the following two propositions
are exactly analogous to Proposition 2.2 and Lemma 2.3.

Proposition 3.2 E[w(M1)] ≥ p · OPT/(d + 1).

Proposition 3.3 E[w(M2)] ≥ (1− p)OPT/(d + 1).

It is now slightly more complex to bound the weight ofM3 than it was for the BVM problem; for BVM,
the set of edges inM2 incident tov ∈ R interfere only with each other, but in the hypergraph version, edgese1

ande2 might not intersect, though they may both intersecte3, and hence all ofe1, e2, e3 will have to be deleted.
However, we can use a similar intuition: In BVM, we charge alledges ofM2 incident tov to the heaviest such
edge; in expectation, each edge is charged a constant numberof times. For the HVM problem, we charge all
the edges in a “connected component” to the heaviest edge in the component, and argue that (with a suitable
choice ofp) the average size of the components is small. More formally,we prove the following lemma:

Lemma 3.4 Settingp = 1− 1/2d, E[w(M3)] ≥ OPT
12d(d+1) .

Proof: Construct an auxiliary directed graphF as follows: For eache ∈M2, add a corresponding vertexve to
F . If e′ is the heaviest edge inM2 that intersectse, add a directed arc fromve to ve′ to F . (If e itself is this
heaviest edge,ve has no out-neighbors.) Note that the graphF is obviously a forest. For eache ∈ M2, if ve is
not the root of its tree inF , we defineRevenue2(e) to be 0, and if it is the root, we setRevenue2(e) to be the
weight of all edges ofM2 in the tree. Clearly,

∑

e Revenue2(e) = w(M2).

We defineRevenue3(e) to be equal to the weight ofe iff e is an edge inM2 that does not intersect any
other such edge. (In which case, it follows thatve is the root of its tree.) We prove thatE[Revenue3(e)] ≥
E[Revenue2(e)]

6 , which proves the lemma, since
∑

e Revenue3(e) = w(M3).

First, note that the probability that any edgee added toM2 intersects an edge added later is at most1/2:
For each vertexu of R contained ine, the probability thate intersects a later edge because ofu is at most1/2d,
as with probability1 − 1/2d, the next edge containingu considered by SIMULATE will be added toM1. As e
contains onlyd vertices inR, the desired probability is at most1/2. (Every vertex ofL is incident to at most
one edge inM2, and soe cannot intersect any other edge through its vertex inL.) It follows that the probability
that anyve ∈ F has a child is at most1/2. We also count the expected number of children ofve; the edge
corresponding to each child ofve must share some vertex withe, and the expected number of children through
a particular vertex is at most

∑∞
i=1 ip(1− p)i = (1− p)/p. As e containsd vertices ofR, the expected number

of children ofve is at mostd(1− p)/p = 1/(2− 1/d); sinced ≥ 2, the expected number of children is at most
2/3. It follows that the expected size of a subtree rooted atve is at most3.

Note thatRevenue2(e) andRevenue3(e) are both0 if ve is not the root of its tree inF . Conditioned onve

being a root,E[Revenue2(e)] ≤ 3w(e), ase is the heaviest edge in its tree, and the expected size of the tree is
at most3. E[Revenue3(e)] is at leastw(e)/2, ase intersects no previously added edges, and with probability
at least1/2, it intersects no edge added toM2 later. Therefore, the ratio of these expectations is at most6,
completing the proof. 2

Now, we define our final algorithm SAMPLEANDPRICE for the HVM problem:

SAMPLEANDPRICE(|L|, R)
k ← Binom(|L|, 1− 1

2d
)

Let L′ be the firstk elements ofL.
M1 ← GREEDY(G(L′, R)).
For eachv ∈ V :

Setprice(v) to be the weight of the edge incident tov in M1.
M ← ∅
For each subsequentl ∈ L− L′:

Let e be the highest-weight edge containingl such that for eachv ∈ e, w(e) ≥ price(v)
If e is disjoint fromM , adde to M .
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HVM(d + 1)

HEM(d) BVM

Edge-at-a-time Matchings
(In arbitrary graphs)

Transversal Matroid Secretary

Figure 1: Relationships between the HVM problem and variousspecial cases.

As before, since the input is a random permutation ofL, L′ is a subset ofL in which every vertex is selected
independently with probability1 − 1/2d, and the matchingM is at least as good asM3 from SIMULATE .
Therefore, we have proved the following theorem:

Theorem 3.5 SAMPLEANDPRICE is anO(d2)-competitive algorithm for the HVM secretary problem.

Note thatM may also contain extra edges that occur earlier in the permutation than edges they intersect; for
the BVM problem, this was the difference between Lemma 2.4 and the stronger bound 2.5. We do not provide
a tighter analysis similar to Lemma 2.5 for the HVM problem inthis extended abstract, nor make an attempt
to optimize the constants of Lemma 3.4. In particular, for the HEM problem withd = 2 (finding an online
matching in a non-bipartite graphG(V,E), given a random permutatation ofE), we have a constant bound on
the competitive ratio; a smaller constant can easily be obtained.

4 Secretary Problems with Groups

Consider a secretary-type problem in which, instead of receiving a random permutation of the elements, ele-
ments can be grouped by an adversary. The algorithm receivesthe number of groups in advance, instead of
the number of elements. However, once the groups have been constructed, they arrive in random order; when
a group arrives, the algorithm can see all its elements at once. Note that the groups are fixed in advance; the
adversary cannot construct groups in response to the algorithm’s choices or the set of groups seen so far. The
effect of such grouping on the difficulty of the problem is notimmediately clear: The adversary can ensure that
some permutations of the element set never occur, which might make the problem more difficult. On the other
hand, as the algorithm is allowed to see several elements at once, it may be easier to compute a good solution.

For instance, consider the classical secretary problem with groups. An optimal algorithm will never hire
any but the best secretary from a group, and it is easy to obtain ane-competitive algorithm: Ignore all but the
best secretary from each group, and run the standard secretary algorithm on these. That is, observe a constant
(1/e) fraction of the groups, and note the value/price of the bestsecretary seen so far. From the rest of the input,
hire the best secretary from the first group with a secretary to beat this price. Perhaps a reason this problem is
as easy as the original version is that only one element is to be selected.

By way of contrast, consider the following matching problem, even restricted to bipartite graphs: The
algorithm is initially given the vertex set of a bipartite graph, and an adversary groups the edges arbitrarily. The
groups arrive in random order; when a group arrives, the algorithm sees the weights of all edges it contains. The
goal is to find a maximum-weight matching; note that as a special case of HEM withd = 2, we have anO(1)-
competitive algorithm for this problem without edge grouping. A natural Sample-And-Price algorithm for this
problem is as follows: Look at a constant fraction of the input, and construct a matching with these edges (either
the optimal matching, or the greedy matchings we used in the previous sections). Use the weights of edges in the
matching to set vertex prices, and in the remainder of the input, select an edge if its weight is at least the price of
each of its endpoints, and if it does not conflict with edges already selected. Unfortunately, this algorithm does
not work: Consider a bipartite graphG(L ∪R), with L = {l1, l2, . . . , ln} andR = {r1, r2, . . . , rn}. We have
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two groups of edges:E1 = {(li, ri)|1 ≤ i ≤ n}, with w((li, ri)) = 1 + 2iε, andE2 = {(li, ri+1)|1 ≤ i < n},
with w((li, ri+1)) = 1 + (2i + 1)ε. Assumingε ≪ 1/n2, E1 corresponds to an optimal matching, with
weight≈ n. If E1 arrives first, the price of eachri is 1 + 2iε. Subsequently, whenE2 arrives,w((li−1, ri)) =
1 + (2i− 1)ε, and hence no edge ofE2 beats the price of its right endpoint. IfE2 arrives first, the price of each
li is 1 + (2i + 1)ε. Subsequently, whenE1 arrives,w((li, ri)) = 1 + 2iε, and so no edge except(ln, rn) beats
the price of its left endpoint, for a total revenue of≈ 1.

We believe, therefore, that the introduction of groups affects these secretary-type problems in non-trivial
ways, and these problems are likely to be of theoretical interest; in addition, they have applications to problems
where groups occur naturally, and we do not receive a random permutation of the entire element set. To
take another example from the advertising world, when a merchant plans a campaign, she may submit to the
reservation system multiple ads, together with the slots inwhich each ad can be placed, and a price for each
ad-slot combination. Even if the merchants arrive in a random order, this does not correspond to a random
permutation of ads, and hence our previous analysis is not directly applicable. We model this (as in BVM) as
an edge-weighted matching problem on a bipartite graphG(L ∪R,E) in which vertices ofL may be grouped;
here, the groups correspond to the set of ads for a given advertiser. The algorithm initially receivesR (the set
of slots), and the number of advertisers/groups; the adversary can construct groups fromL arbitrarily. Once the
groups have been fixed, a random permutation of the groups is seen, and when a group arrives, the algorithm
must decide which ads to accept, and where to place them; as always, decisions are irrevocable. We refer to
this as the BVM problem with groups.

Theorem 4.1 There is anO(log n)-competitive algorithm for the BVM problem with groups.

It is easy to prove this theorem using standard techniques: Sample the first half of the vertices, and letw denote
the weight of the heaviest edge seen so far. Pick an integerj uniformly at random in[0, 1 + ⌈log2 n⌉], and
set a threshold ofw/2j . In the second half, greedily construct a matching using edges with weight above
the threshold. (See, for instance, Theorem 3.2 of [1] for analysis of an essentially similar algorithm.) For
completeness, we give a proof of Theorem 4.1 in Section A.2 ofthe appendix.

A natural question is whether one can find a constant-competitive algorithm for BVM with groups. Note
that one must be careful about using Sample-And-Price algorithms: First, as the example above shows, the
natural algorithm with groups of edges instead of vertices does not work. Second, one might sample a constant
fraction of groups, construct a matchingM1 on the sampled groups, and then useM1 to set prices. However,
once prices have been set in this way, the edges assigned to a group g may not be the same as the edges that
would have been assigned tog in M1 if g had been sampled. This was not the case for the basic BVM problem:
If an edge(l, r) is in M2, then by construction – fixing all other coin flips – if the coinfor l had come up heads
instead of tails,(l, r) would be inM1. As the example in Figure 2 shows, this desirable property nolonger
holds once groups are introduced.

A

B

C

X

Y

4
3
2
1

Figure 2: Example for BVM with groups. Vertices A,C are in group 1, and vertex B is in group 2. Using the
SAMPLEANDPRICE algorithm, if group 2 is sampled and group 1 is not, both edgesincident to A and C beat
their prices, and hence are added toM2. If both groups are sampled, A will be matched to X and B to Y inM1,
while C will remain unmatched.

We conjecture that the following algorithm SAMPLEWITHGROUPS is constant-competitive for BVM with
Groups. Here,G denotes the set of groups:
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SAMPLEWITHGROUPS(|G|, R)
Sample each group with probabilityp.
Construct a greedy matchingM1 on the set of sampled groupsG′.
M2 ← ∅.
For each groupg in G − G′:

Let E′ denote the edges assigned to vertices ofg in the greedy matching onG′ ∪ g.
M2 ←M2 ∪ E′.

M3 ←M2

For eachr ∈ R:
If r has degree> 1 in M3:

Delete all edges incident tor from M3.

It is easy to see thatE[w(M1)] ≥ pOPT/2. By construction, the edges assigned tog in M2 are precisely
those that would have been assigned tog in M1 if g had been sampled. (Hence, this algorithm differs from the
natural SAMPLEANDPRICE.) Therefore, it follows that the probability an edge contributes toM2 is (1 − p)/p
times the probability it contributes toM1. If p = 1/2, it follows thatE[w(M2)] = E[w(M1)], and further, that
the expected degree ofr ∈ R in M2 is equal to its expected degree inM1, which is at most 1 sinceM1 is a
matching. This does not suffice to give a lower bound on the expected weight ofM3, but we conjecture that the
expected weight ofM3 is at most a constant factor lower than that ofM2.

Conjecture 1 SAMPLEWITHGROUPS is constant-competitive for the BVM problem with groups.

5 Graphic Matroids

In this section, we describe a2e-competitive algorithm for the Graphic Matroid Secretary problem. Here, we
are initially given the set of verticesV of an undirected edge-weighted graphG = (V,E) together with the
size of its edge set|E|. The edges of the graph appear in a random order, and the goal is to accept a maximum-
weight subset of edgesF that does not contain any cycles. As always, the decision to accept an edge must be
made upon its arrival, and cannot be revoked.

This problem is equivalent to finding the maximum-weight spanning tree (assumingG is connected) and is
also equivalent to finding the maximum-weight independent set in the graphic matroid defined by the graphG.
Babaioff et al. [1] give a 16-competitive algorithm for the secretary version of this problem based on a related
algorithm for transversal matroids. We give a simple reduction to the classical secretary problem, losing a
factor of2 in the reduction. In this way, we obtain a2e ≈ 5.436-competitive algorithm for the Graphic Matroid
Secretary problem.

Fix an orderingv1, v2, . . . , vn on the vertices ofG. Consider two directed graphs: graphG0 is obtained by
orienting every edge ofG from higher numbered to lower numbered vertex, and graphG1 by orienting every
edge from lower to higher numbered vertex.

Our online algorithm initially flips a fair coinX ∈ {0, 1}. For each vertexv independently, it runs a
secretary algorithm to find the maximum-weight edge leavingv in GX . The output of the algorithm isF ′, the
union of all edges accepted by the individual secretary algorithms. Since the graphGX is acyclic and each
vertex has at most one outgoing edge, the set of edgesF ′ must be acyclic even in the undirected sense.

It remains to show a lower bound on the weight ofF ′. For each vertexv, let hX(v) be the heaviest edge
leaving vertexv in GX . Let FX = {hX(v) | v ∈ V }. Let F ∗ be a maximum-weight acyclic subgraph ofG.

Proposition 5.1
∑

v∈V w(h0(v)) + w(h1(v)) ≥∑e∈F ∗ w(e).

Conditioned on the coin flipX, each secretary algorithm recovers at least1/e fraction of the weight of the
heaviest edge leaving its vertex. HenceE[w(F ′) | X = x] = 1

e
w(Fx) for x = 0, 1. Using Proposition 5.1,
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E[w(F ′)] = 1
e

(

1
2E[w(F ′) | X = 0] + 1

2E[w(F ′) | X = 1]
)

≥ 1
2e

w(F ∗). Therefore, we obtain the following
theorem:

Theorem 5.2 There is a2e-competitive algorithm for the graphic matroid secretary problem.

6 Conclusions and Open Problems

We list several problems that remain to be solved:

• An improved understanding of groups – and their contribution to the difficulty of secretary-type problems
– is likely to be of interest. In particular, it may be possible to find a constant-competitive algorithm for
the BVM problem with groups.

• Few lower bounds for these problems are known beyond1/e for the original secretary problem; obtaining
such bounds may require new techniques.

• In the basic BVM problem, we lose a factor of 2 by constructinggreedy matchings. If, instead, we mod-
ified our algorithm to set prices using an optimal matchingM1 on the sampled vertices, is the resulting
algorithm 4-competitive? Is it evenO(1)-competitive?

• Finally, obtaining anO(1)-competitive algorithm for the general matroid secretary problem is still open,
though the competitive ratios for important special cases such as transversal and graphic matroids have
been reduced to small constants.

Acknowledgments: We would like to thank Florin Constantin, Jon Feldman, and S.Muthukrishnan for helpful
discussions on BVM and related problems.
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A Omitted Proofs

A.1 Proof of Lemma 2.5

We prove Lemma 2.5 below, showing that SAMPLEANDPRICE is 8-competitive for the BVM problem.

For eachv ∈ R, we letRevenue2(v) be the revenue earned byv in M2, which is the total weight of edges
in M2 incident tov. Similarly, Revenue3(v) denotes the weight of the (at most one) edge ofM3 incident
to v. Let Pi be the probability thatv is incident toi edges inM2. Finally, we letE[Revenue2(v)|i] and
E[Revenue3(v)|i] be the expected revenue earned byv in M2 andM3 respectively, conditioned onv being
incident toi edges inM2.

First, we note thatE[Revenue3(v)|i] = E[Revenue2(v)|i]
i

, as for each set of coin flips in whichv has degreei
in M2, we may see any of thei edges incident tov first in the random permutation; on average, then, we receive
a1/i fraction ofRevenue2(v). We then have the following equations:

E[Revenue2(v)] =

∞
∑

i=1

Pi · E[Revenue2(v)|i]. (1)

E[Revenue3(v)] =
∞
∑

i=1

Pi ·
E[Revenue2(v)|i]

i
. (2)

For ease of notation below, we usewi to denoteE[Revenue2(v)|i]. We wish to boundE[Revenue3(v)] in
terms ofE[Revenue2(v)], and we do this as follows: First, we show thatPi ≤ (1−p)Pi−1, andwi ≤ i

i−1wi−1.
Next, we prove that subject to these constraints, the worst-case ratio of these two expectations occurs when
all the constraints hold with equality. We can then evaluatethe sums, and show thatE[Revenue3(v)] ≥
pE[Revenue2(v)], completing our proof.

It is easy to see thatwi ≤ i
i−1wi−1; consider any partial history of SIMULATE in which i−1 edges incident

to v have been added toM2 so far; as we process edges in decreasing order of weight, theith edge must
be the lightest of those seen so far. As this is true for each (partial) history, it holds in expectation, and so
wi ≤ wi−1 +

wi−1

i−1 . Similarly, to see thatPi ≤ (1 − p)Pi−1, consider a partial history until the(i − 1)st edge
has just been added:M2 will have i−1 edges incident tov if the coin for the next edge incident tov considered
by SIMULATE comes up “heads”, with probabilityp. M2 will have i edges incident tov if the coin for the next
edge incident tov comes up “tails”, and that for the following edge comes up heads, with probability(1−p)·p.1

Again, as this holds for each history, we havePi ≤ (1− p)Pi−1.

To see that the worst-case ratio occurs when all these constraints hold with equality, notice that the ratio
between successive terms of Equations (1) and (2) is increasing: The ratio between theith terms is simply
i. Let α denote the worst-case ratio of the expectations; from Lemma2.4, we already know thatα ≤ p2. If
j = ⌊1/α⌋, for 1 ≤ i ≤ j, the ratio between theith term of the two sums is at mostα, while for i > j, the
ratio is greater thanα. Consider a choice ofwi’s andPi’s such that the ratio between (1) and (2) be as large as
possible, and suppose the constraints onPi andwi do not all hold with equality. Letk be an index such that
Pk < (1− p)Pk−1 or wk < k

k−1wk−1. If k > j, then by increasingPk or wk, we do not violate any constraint,
and the increase in (1) is greater thanα times the increase in (2). Similarly, ifk ≤ j, by decreasingPk−1 or
wk−1 to achieve equality, and also decreasingP1 . . . Pk−2 or w1 . . . wk−2 to maintain feasibility, the decrease
in (1) is less thanα times the decrease in (2). In either of these situations, we increase the ratio between the two
sums, contradicting our initial setting ofwi, Pi.

1It is possible that there is only one more edge incident tov, in which casev will have i edges with probability(1 − p). However,
this only helps the analysis. Alternatively, one can assumethe existence of a large number of “zero-weight” edges incident tov.
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Finally, we can now evaluate this worst case ratio. Settingwi = i
i−1wi andPi = (1− p)Pi−1, we find:

E[Revenue2(v)] =
∞
∑

i=1

iw1P1(1− p)i−1 = w1P1/p
2.

E[Revenue3(v)] =

∞
∑

i=1

w1P1(1− p)i−1 = w1P1/p = pE[Revenue2(v)]

As
∑

v E[Revenue2(v)] = E[w(M2)] ≥ (1 − p)OPT/2, we haveE[w(M3)] ≥ p(1 − p)OPT/2, completing
the proof of Lemma 2.5.

A.2 Other Proofs

Proof of Theorem 4.1. We show that the algorithm of Theorem 4.1 isO(log n)-competitive for BVM with
groups, closely following the analysis of [1] for anO(log k)-competitive algorithm for general matroids. Recall
that the algorithm observes the first half of the vertices, and picks a random integerj ∈ [0, 1 + ⌈log n⌉]. If w
is the weight of the heaviest edge seen so far, the algorithm sets a threshold ofw/2j , and in the second half,
greedily constructs a matching using edges of weight greater than this threshold.

Let OPT be an optimal matching; we also abuse notation and useOPT to refer to the weight of this
matching, though the meaning will be clear from context. Letw1, w2, . . . wk denote the weights of edges in
OPT, such thatwi ≥ wi+1 for 1 ≤ i < k. Letq denote the largest index in[1, k] such thatwq ≥ w1/n. Clearly,
∑q

i=1 wi > OPT/2, as the remaining edges all have weight less thanw1/n, and there are fewer thann of them.
For any set of edgesF , we useni(F ) to denote the number of edges inF with weight at leastwi, andmi(F )
to denote the number of edges inF with weight at leastwi/2. Now, we have:

q
∑

i=1

wi =

(

q−1
∑

i=1

ni(OPT )(wi −wi+1)

)

+ nq(OPT )wq

Let M be the matching returned by our algorithm. We lower bound theweight ofM as follows:

w(M) ≥ 1

2

(

q−1
∑

i=1

mi(M)(wi − wi+1)

)

+
mq(M)wq

2

In order to obtain anO(log n)-competitive algorithm, it suffices to show that for each1 ≤ i ≤ q,
E[mi(M)] ≥ ni(OPT)/O(log n). First, consider the case ofi = 1: n1(OPT) = 1, and we argue that
E[m1(M)] ≥ 1/4(⌈log n⌉ + 1). With probability 1/4, the vertexv incident to the heaviest edge appears in
the second half, and the heaviest edge not incident to any vertex of v’s group appears in the first half. If this
occurs, and the algorithm picksj = 0 (which happens with probability1/(⌈log n⌉ + 1)), then the only edges
with weight above the threshold are those incident to vertices inv’s group. Thereore, the greedy algorithm will
select the heaviest edge with probability1/4(⌈log n⌉+ 1), and henceE[m1(M)] ≥ 1/4(⌈log n⌉+ 1).

We now complete the argument for eachi > 1. Let v be the vertex incident to the heaviest edge. We
consider two cases: First, that at least half the edges of OPTwith weight at leastwi are incident to vertices not
in the same group asv, and second, that more than half these edges are incident to vertices ofv’s group.

In the former case, suppose thatv is seen in the first half. Letw be the weight of this heaviest edge, and let
i′ be the smallest integer in[0, 1 + ⌈log n⌉] such thatw/2i′ ≤ wi.2 With probability 1

(⌈log n⌉+1) , the algorithm

picksj = i′, and the threshold is set to bew/2i′ > wi/2. Let X denote the event that the threshold is set to be

2Note thatw may be greater thanw1, as the heaviest edge may not be inopt. However, it is easy to see thatw ≤ 2w1, and since
wi ≥ w1/n, there always exists such an indexi′.
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w/2i′ ; as we have seen,Pr[X] ≥ 1/2(⌈log n⌉+ 1). We show that conditioned onX, E[mi(M)] is sufficiently
large.

Recall that OPT contains a matching of sizei using edges of weight at leastwi; it follows that in expectation,
using edges of this weight, there is a matching in the second half of size at leasti/4. (This is because at least
half of thesei edges are in other groups; even conditioned onv appearing in the first half, each of the remaining
≥ i/2 edges could appear in either half.) Since we construct a greedy matching using edges of weight at
leastwi/2, the expected size of this matching is at leasti/8. Hence, with probability at least 1

2(⌈log n⌉+1) ,
E[mi(M)] ≥ i/8. That is,E[mi(M)] ≥ i/16(⌈log n⌉+ 1).

We now consider the second case, when more than half the edgesof OPT with weight at leastwi are in
the same group asv. Let u be the vertex outside this group incident to the heaviest-weight edge. Supposeu’s
group appears in the first half, andv’s group in the second. Letw be the weight of the heaviest edge incident
to u; if w ≤ wi and we pickj = 0, theonly edges above the threshold will be vertices inv’s group. Since we
construct the greedy matching using only the group ofv, and there exists a matching in this group with more
thani/2 edges of weightwi, the matching we construct has at leasti/4 edges of weight at leastwi. If w > wi,
then with probability1/⌈log n⌉ + 1, we pick an indexj such thatwi ≥ w/2j > wi/2. Again, we will find a
matching in which at leasti/4 edges have weight at leastwi/2. Therefore, with probability at least 1

4(⌈log n+1⌉) ,
we find a matching of size at leasti/4. Therefore,E[mi(M)] ≥ i/16(⌈log n⌉+ 1).

Therefore, we haveE[w(M)] ≥ 1
2

1
16(⌈log n⌉+1)

∑q
i=1 wi ≥ OPT/64(⌈log n⌉+ 1). 2

Proof of Proposition 5.1. Let h(v) denote the heaviest edge incident tov; clearly
∑

v w(h0(v))+ w(h1(v)) ≥
∑

v w(h(v)). It remains to show that this latter sum is at least
∑

e∈F ∗ w(e). To see this, consider the treeF ∗,
and root it arbitrarily. For each edgee = (u, v) ∈ F ∗, the weight ofe is at mosth(v), wherev is the vertex
further from the root. Each vertexv is charged by at most one edge, and so

∑

v w(h(v)) ≥∑e∈F ∗ w(e). 2
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