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Abstract

We examine several online matching problems, with apptioatto Internet advertising reservation
systems. Consider an edge-weighted bipartite gtaphith partite setd., R. We develop a-competitive
algorithm for the following secretary problem: Initiallyvgn R, and the size of., the algorithm receives
the vertices ofl sequentially, in a random order. When a vertex L is seen, all edges incident tare
revealed, together with their weights. The algorithm moshiediately either matchto an available vertex
of R, or decide that will remain unmatched.

In [4], the authors show a 16-competitive algorithm for tremsversal matroid secretary problem, which
is the special case with weights on vertices, not edges.i{&lguntly, one may assume that for edch L,
the weights on all edges incidenttare identical.) We use a similar algorithm, but simplify anmgbrove
the analysis to obtain a better competitive ratio for the ergeneral problem. Perhaps of more interest is
the fact that our analysis is easily extended to obtain caithealgorithms for similar problems, such as to
find disjoint sets of edges in hypergraphs where edges amiiee. We also introduce secretary problems
with adversarially chosegroups

Finally, we give a&2e-competitive algorithm for the secretary problem on graphatroids, where, with
edges appearing online, the goal is to find a maximum-weigdie subgraph of a given graph.
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1 Introduction

Many optimization problems of interest can be phrased démj@ maximum-weight independent subset from
a ground set of elements, for a suitable definition of inddpane. A well-known example is the (Maximum-
weight) Independent Set problem on graphs, where we wismitbdiset of vertices, no two of which are
adjacent. A more tractable problem in this setting is the iaxn-weight Matching problem, in which we
wish to find a set of edges such that no two edges share an ehdfdiis notion of independence can be
naturally extended to hypergraphs, where a set of hypesedgmnsidered independent if no two hyperedges
share a vertex.

In the previous examples, independent sets are charaxdrizforbidding certaipairs of elements from
the ground set. A somewhat related, but different notiomdépendence comes from the independent sets of
a matroid. For example, in the uniform matroid of rankany set of at most elements is independent. For
graphic matroids, a set of edges in an undirected graph épertlent if and only if it does not contain a cycle;
the optimization goal is to find a maximum-weight acyclic gtaph of a graplz. In transversal matroids, a
set of left-vertices of a bipartite graph is independenti anly if there is a matching that matches each vertex
in this set to some right-vertex.

In many applications, the elements of the ground set andweghts are not known in advance, but arrive
online one at a time. When an item arrives, we must immedgiaketide to either irrevocably accept it into the
final solution, or reject it and never be able to go back toaimagWe will be interested in competitive analysis,
that is, comparing the performance of an online algorithrartaptimal offline algorithm which is given the
whole input in advance. In this setting, even simple prolsléke selecting a maximum-weight element become
difficult, because we do not know if elements that come in tharé will have weight significantly higher or
lower than the element currently under consideration. liwva&e no assumptions about the input, any algorithm
can be fooled into performing arbitrarily poorly by oferiitg@ medium-weight item, followed by a high-weight
item if it accepts, and a low-weight item if it rejects. Towmbkuch problems, which frequently arise in practice,
various assumptions are made. For instance, one might asthahweights are all drawn from a known
distribution, or (if independent sets may contain sevdehents) that the weight of any single element is small
compared to the weight of the best independent set.

One useful assumption that can be made is that the elemetite gfound set appear in a random order.
The basic problem in which the goal is to select the maximusight element is well known as tt&®ecretary
Problem It was first published by Martin Gardner in| [6], though it @apps to have arisen as folklore a decade
previously [5]. An optimal solution is to observe the firste elements, and select the first element from the
rest with weight greater than the heaviest element seereifirgt set; this algorithm givesig/'e probability of
finding the heaviest element, and has been attributed tosdeughors (see [5]).

Motivated by this simple observation, several results reweeared for more complex problems in this
random permutation model; these are often called secrgtpeyproblems. Typically, given a random permu-
tation of elements appearing in an online fashion, the gotd find a maximum-weight independent set. For
example, Kleinberg'[7] gives & + O(1/v'k)-competitive algorithm for the problem of selecting at mbst
elements from the set to maximize their sum. Bababfhl. [2] give a constant-competitive algorithm for the
more general Knapsack secretary problem, in which eachesiehas a size and weight, and the goal is to find
a maximum-weight set of elements whose total size is at mgsea integers.

Babaioff et al. [1] had earlier introduced the so-calleshtroid secretary problerand gave ard(log k)-
competitive algorithm to find the max-weight independemnb$elements, wherg is the rank of the underlying
matroid. A16-competitive algorithm was also given in [1] for the spe@ake of graphic matroids; this was
based on theitd-competitive algorithm algorithm for the important caserahsversal matroidswhered is
the maximum degree of any left-vertex. Recently, Dimitrad &#laxton[[4] improved the latter to a ratio 16
for all transversal matroids. A significant open questiowfether there exists @(1)-competitive algorithm
for general matroids, or for other secretary problems with-matroid constraints.



These secretary-type problems arise in many practicaltgis where decisions must be made in real-time
without knowledge of the future, or with very limited knowlige. For example, a factory needs to decide which
orders to fulfil, without knowing whether more valuable asiwill be placed later. Buyers and sellers of houses
must decide whether to go through with a transaction, thdabgh may receive a better offer in a week or a
month. Below, we give an example from online advertisingeays, which we use as a recurring motivation
through the paper.

Internet-based systems are now being used to sell adagrisgiace in other media, such as newspapers,
radio and television broadcasts, etc. Advertisers in thesgia typically plan advertising campaigns and reserve
slots well in advance to coincide with product launches,kp&#@opping seasons, or other events. In such
situations, it is unreasonable to run an auction immedidtefore the event to determine which ads are shown,
as is done for sponsored search and other online advertising

Consider an automatic advertising reservation systemhinohwthe seller controls a number sibts each
representing a position in which an advertisement (hezeaff) can be published. Advertisers/Bidders appear
periodically, and report which slots they would like to pdaan ad in, and how much they are willing to pay for
each slot. When an advertiser reports a bid, the system muostdiately decide whether or not to accept it; if a
bid is accepted, the adustbe placed in the corresponding slot, and if not, the ad is premtly rejected. Note
that in disallowing the removal of an accepted ad, our moiferd significantly from that ofi[3], in which the
seller can subsequently remove an accepted ad if he makespeosatory payment to the advertiser.

We model this system as as an online edge-weighted matchingem on a bipartite grapf(L U R, E):
the vertices of seR correspond to the set of slots, and those oflséb the ads. For each vertéxe L, its
neighbors inR correspond to the slots in which adan appear, and the weight of edder) is the amount
the advertiser is willing to pay if appears in slot. Initially, the seller knows the set of slofg; vertices ofL
appear sequentially in a random order, as advertisers bgfiotsmn When a vertek € L is seen, all the edges
from [ to R are revealed, together with their weights; the seller nmstédiately decide whether to accept ad
I, and if so, which of the relevant slots to place it in. Thees&lgoal, obviously, is to maximize his revenue.
Subsequently, we refer to this problem as Bipartite Vedea-time Matching (BVM). We describe our results
for BVM and other problems below.

1.1 Resaultsand Outline

Recall that the elements of a transversal matroid are orntéepaet L (subsequently referred to as thedt
verticeg of a bipartite graph, and a set of vertic8sC L is independent if the graph constains a perfect
matching fromsS to the other partite set. That is, the transversal matraicesgry problem is equivalent to the
special case of BVM in which all edges incident to edehl have the same weight. (Equivalently, the weights
are on vertices of. instead of edges.) In Sectidh 2, we give a simpler and tigimatysis for an algorithm
essentially similar to that of Dimitrov and Plaxtan [4] fembhsversal matroids; this allows us to improve the
competitive ratio from 16 to 8, even for the more general B\ldigpem.

In addition to an improved ratio, our methods are of inteassthey appear robust to changes in the model
and can be naturally applied to more general problems. \Wstillite this in Section 3 by extending our algo-
rithms to hypergraph problems, with applications to mormplex advertising systems in which advertisers
desirebundlesof slots, as opposed to a single slot. In particular, we altanstant-competitive algorithms for
finding independent edge sets in hypergraphs of constaetsdg.

We also introduce secretary problems wgftoups to model applications in which we do not see a truly
random permutation of elements. We assume that an adveraargroup the elements arbitrarily, but once
the groups are constructed, they appear in random ordern\&lgeoup appears, the algorithm can see all the
elements in the group. We discuss this idea further in Seidtio

Finally, in Sectiori_ b, we obtain a simpde-competitive algorithm for the problem of finding indepentle
edge-sets in graphic matroids, improving the ratio of 1&ffd].



The majority of our algorithms follow the “sample-and-gionethod common to many solutions to sec-
retary problems. That is, we look at a random sample of el&mntaining a constant fraction of the input,
and use the values observed to deternpneesor thresholds. In the second half, we accept an element if its
weight/value is above the given price. For instance, in {hi@mal solution to the original secretary problem,
the price is set to be the highest value seen in thelffisfraction of the input, and we accept any element from
the remaining set with value greater than this price.

2 TheBipartite Vertex-at-a-time M atching Problem

Recall that in the BVM problem, the algorithm is initiallyvgin one partite seR of a bipartite graptG(L U

R, E), together with the size of the other partite £etThe algorithm sees the vertices bfsequentially, in a
random order. When a vertéx L is seen, all edges incidenttare revealed, together with their weights. The
algorithm must immediately either mat€to an available vertex aR, or decide that will remain permanently
unmatched. In this section, we show that an algorithm basetai of [4] gives a competitive ratio of 8 for this
problem. Before presenting the algorithm for BVM, we ddsera closely related algorithmMULATE that is
easier to analyze, and then show that our final algorithm dbksmst as well asIBULATE.

Let GREEDY denote the following greedy algorithm for the offline Edgeighted bipartite matching problem:

GREEDY(G(L UR, E)):
Sort edges oF in decreasing order of weight.
Matching M « ()
For each edge € F, in sorted order
If M U eis a matching:
M— MUe
Returni.

Letw(F') denote the weight of a set of edgesand OPT denote the weight of an optimum (max-weight)
matching onG. It is easy to see the following proposition, thaR&=DY is a 2-approximation.

Proposition 2.1 w(M) > OPT/2.

We now describe the algorithmBULATE, which we use purely to analyze our final algorithm for BVM.

SIMULATE :
Sort edges of+ (L U R, F) in decreasing order of weight.
Ml, M2 — @
Mark each vertex € L as unassigned.
For each edge = (I,r) € E, in sorted order
If [ is unassignedND M, U e is a matching:
Mark [ as assigned
Flip a coin with probabilityp of heads
If heads, M7 « M; Ue
ElseM,; «— My Ue
Ms «— Moy
For each vertex € R
If r has degree- 1 in M3
Delete all edges incident tofrom M.

Say that an edgeis consideredby SIMULATE if we flip a coin and assiga to eitherM; or M,. We make
two observations aboutiBULATE: Once any edge incident to a vertex L has been considered, no other
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edge incident t@ will be considered later. Second, once an edge incidentdoR has been added &/, no
subsequent edge incidentitavill be considered. (Note that multiple edges incident tmight be considered
until one of these edges is addedMq.)

Observe that from our description ofMBJLATE, M; is a matching, bufi/; may not be, as a vertexe R
may be incident to multiple edges 6f>. Hence, we have a final pruning step in case there are mudigges
incident to the same vertex &, this gives us a matchindy/s. We now prove three statements aboumt @_ATE ,
and later show that the matching returned by our online d@hguris at least as good dd3.

Proposition 2.2 E[w(M;)] > pOPT/2.

Proof: SIMULATE tosses a coin (at most) once for each verteX;in\/; is precisely the matching one would
obtain from running ®EEDY on L’ U R, whereL’ denotes the vertices which came up heads. (If the coin for
a vertex comes up tails, this vertex has no effecfon) If OPT denotes the weight of an optimum matching
onL' U R, itis easy to see th&[OPT] > pOPT, and hence th&@w(M;)] > pOPT/2. ]

Lemma2.3 E[w(Ms)] > (1 — p)OPT/2.

Proof: Consider any history of coin tosses in which an arbitraryeadis being considered, and we are about
to flip a coin to determine whetheris added tal/; or M,. Its expected contribution td/; is pw(e), and to
Mo, is (1 — p)w(e). This holds for each edgeand any history in whicla can contribute to the weight df/;

or Ms; henceE[w(Ms)] = %E[w(]\/[l)], completing the proof. O

Lemma24 Efw(Ms)] > 242 OPT,

Proof: For each vertex € R, let Revenues(v) denote the revenue earned by vertér Ms, which we define
as the sum of the weights of edgesify incident tov. (Hence,), Revenues(v) = w(M>).) For each edge
e incident tov, let E[Revenues(v)|e] denote the expected revenue earnea by M5, conditioned on the fact
thate is the first edge incident to selected by 8/ULATE for M. It is easy to see th@[Revenues(v)|e] <
w(e)/p, by considering how can earn revenue: If the next edge incident toonsidered by SMULATE is
added toM; (which happens with probability), thenv earns preciselyu(e), as no later edge incident o
can ever be considered. In generalyifs incident toi edges in)Ms, the revenue it earns is at most(e),
and the probability of this event is at mddt — p)'~! - p; this is because the next- 1 edges incident te
that are considered must be added\fg, and theith edge is added td/;. Therefore E[Revenues(v)|e] <
w(e) 3572y i-p(l—p)' =" = w(e)/p.

Similarly, for each vertex € R, let Revenues(v) denote the revenue earned by vertéx M3, which is the
weight of the (at most one) edge incidenwtm M3. LetE[Revenues(v)|e] denote the expected revenue earned
by v, conditioned ore being the first edge incident toadded toM>. With probability p, the next considered
edge incident ta is added tal/;, and hence» has degree 1 ififs. ThereforeE[Revenues(v)|e] > pw(e),
and soE[Revenues(v)|e] > p?E[Revenues(v)lel; it follows thatE[w(M3)] > p?Elw(Ms)] = MOPT.

O

Before describing our final algorithm for EBP, we show that thatching returned by an intermediate

algorithm S\MPLEANDPERMUTE is at least as good ad’s, which implies that we have W-competitive

algorithm: settingp = 2/3, we get al3.5-competitive algorithm. However, our pruning step allovesta take
an edge forM3 only if its right endpoint has degree 1; a more careful prgrstep allows more edges in the
matching. We use this fact to give a tighter analysis for v mlgorithm, obtaining a competitive ratio of 8.

Note that the matching/; in SAMPLEANDPERMUTE is precisely the same ag; from SIMULATE; in-
tuitively, in the former, we toss all the coins at once and GrReEEDY, while in the latter, we toss coins while
constructing the Greedy Matching. (More precisely, the algorithms to generate the matchings are equiv-
alent.) Similarly, the “matching” 1 in this algorithm is essentially/; from SIMULATE. The difference
between the two algorithms is in the pruning step: To coustils in SIMULATE , we delete all edges incident



SAMPLEANDPERMUTE(G(L U R, E)):
L 10
Foreach € L:
With probabilityp, L' — L' U {l}
M, — GREEDY(G[L' U R)).
For eachr € R:
Setprice(r) to be the weight of the edge incidentitén M.
M, M2 — @
For eachl € L — L'/, in random order:
Lete = (I, 7) be the highest-weight edge such thgt) > price(r)
Add e to M.
If M U eis amatching, add to M.

to any vertexr € R with degree greater than 1; imS8PLEANDPERMUTE, we add toM the first such edge
seen in our permutation df — L'. It follows immediately from Lemma2 4 tha@[w(M)] > p?(1 —p)OPT/2,
but accounting for the difference in pruning allows the duling tighter statement, which we prove in the
appendix.

Lemma25 E[w(M)] > 2LoPT.

We now present our final algorithm, a trivial modification AMPLEANDPERMUTE for the online BVM

problem. SAMPLEANDPRICE(|L|, R)

k «— Binom(|L|,p)

Let L' be the firstk vertices ofL.

M, «— GREEDY(G[L' U R)).

For each- € R:
Setprice(r) to be the weight of the edge incidentitén M.

M «— 0

For each subsequeht L — L/, :
Lete = (I, r) be the highest-weight edge such thde) > price(r)
If M U eis a matching, acceptfor M.

As the input to 3MPLEANDPRICE is a random permutatiod,’ is a subset of. in which each vertex of
L is selected with probability; it is easy to see that this algorithm is equivalent &M8LEANDPERMUTE.
Therefore E[w(M)] > @OPT; settingp = 1/2 implies that the expected competitive ratio is 8.

3 Independent Edge Setsin Hypergraphs

In the Hypergraph Edge-at-a-time Matching (HEM) problene, ave initally given the vertex set of a hyper-
graph; subsequently, hyperedges appear in a random oréhen %h edge (together with its weight) is revealed,
the algorithm must immediately decide whether or not to pciteas before, the goal is for the algorithm to
select a maximum-weight set of disjoint edges. For arlyithgipergraphs, one can observe that even the offline
version of this problem is NP-Complete (and also hard to @pprate) via an easy reduction from the Inde-
pendent Set problem. However, the difficulty is related togtze of the hyperedges; if all edges contain only
2 vertices, for instance, then we are simply trying to find aamiag in a (possibly non-bipartite) graph. (Even
in this special case, the problem is of interest in an onletérsy.) Letd denote the maximum size of an edge
in the hypergraph.



We provide arO(d?)-competitive algorithm for the HEM problem by solving the l@eneral Hypergraph
Vertex-at-a-time Matching (HVM) problem, described addats: We are initally given a subsédt of the
vertex set of a hypergraph. The remaining verti€esrrive online; each edge of the hypergraph is constrained
to contain exactly one vertex df, together with some vertices @. The vertices ofl. appear online in a
random order; whehe L is revealed, the algorithm also sees all edges incidentogether with their weight.
At this point, the algorithm must immediately decide whetbenot to accept some edge containingnd if
so, which edge; again, the goal is for the algorithm to sedectaximum-weight set of disjoint edges. Here,
let d denote the maximum number of vertices®ftontained in a single edge (so the largest edgedhad
vertices). First, we observe that the HEM problem with edge & reduces to the HVM problem with edge
sized + 1: Let R be the vertex set of the original hypergraph, and add onex#otl. for each original edge.
An edge of the new hypergraph consists of an old edge, togefitie the corresponding vertex df. Clearly,
observing a random permutation bftogether with the incident edges is equivalent to a randomption
of the edge set of the original hypergraph. Also, notice thatthe BVM problem of Sectionl 2 is simply the
special case of HYM whed = 1. (See Figure 1 at the end of this section.)

These hypergraph problems capture the notion of derbandles For instance, in ad reservation systems,
advertisers rarely make reservations for a single ad ateg timey are more likely to plan advertising campaigns
involving multiple individual ads. In many campaigns, adigers create various ads which are related to and
complement or reinforce each other; these advertiserstrhgymterested in acquiring a bundle or set of slots
for this campaign. They submit to the reservation systenbtimelles they are interested in, together with the
price they are willing to pay; the system must either accemqaest for an entire bundle or reject it, as it
does not receive revenue for providing the advertiser witar of the bundle. If each advertiser submits a
request for a single bundle, we obtain the HEM problem wittiexeset corresponding to the set of slots. More
generally, an advertiser may submit a requesbfor of a set of bundles, together with a price for each bundle.
(For example, an advertiser might want an ad to appear infaesg out of four local newspapers.) This leads
to the HVM problem, with vertex sdt corresponding to the set of advertisers, andisti the set of slots: We
receive a random permutation of advertisers, and eachtsbranforms us of the bundles she is interested in,
together with a price for each bundle.

Let GREEDY denote the offline algorithm for HVM that sorts edges in dasieg order of weight, and
selects an edge if it is disjoint from all previously selecetiges. For ease of exposition, we subsequently
assume that the hypergraph(is+ 1)-uniform; that is, that each edge contains exadtijertices ofR together
with one vertex of.

Proposition 3.1 GREEDY returns a(d + 1)-approximation to the maximum-weight disjoint edge set.

We again define an algorithmMBULATE, as in Sectiofl2:

Sort edges oF in decreasing order of weight.
Mark each vertex € L as unassigned.
Ml, MQ < @
For each edge € E in sorted order:
Let! be the vertex of. ine
If [ is unassignedND e is disjoint from M7 :
Mark [ as assigned.
Flip a coin with probabilityp of heads
If heads, ade to M,
If tails, adde to My
My «— ()
For eache € Ms:
Add e to Mj if e is disjoint from the rest oft/s.




As before, we letw(F') denote the weight of an edge gét The proofs of the following two propositions
are exactly analogous to Proposition|2.2 and Lernmla 2.3.

Proposition 3.2 E[w(M;)] > p- OPT/(d + 1).
Proposition 3.3 E[w(M3)] > (1 — p)OPT/(d + 1).

It is now slightly more complex to bound the weight fs than it was for the BVM problem; for BVM,

the set of edges i/, incident tov € R interfere only with each other, but in the hypergraph versetiges:
andey might not intersect, though they may both intersggtand hence all of;, e2, e3 will have to be deleted.
However, we can use a similar intuition: In BVM, we chargeealbes of\/; incident tov to the heaviest such
edge; in expectation, each edge is charged a constant nurhtieres. For the HVM problem, we charge all
the edges in a “connected component” to the heaviest edde iodmponent, and argue that (with a suitable
choice ofp) the average size of the components is small. More formatyprove the following lemma:
Lemma3.4 Settingp = 1 — 1/2d, E[w(M3)] > moqiiy-
Proof: Construct an auxiliary directed graghas follows: For each € M,, add a corresponding vertex to
F. If ¢ is the heaviest edge ih/, that intersectg, add a directed arc from. to v to F'. (If e itself is this
heaviest edge;. has no out-neighbors.) Note that the grdpls obviously a forest. For eache My, if v, is
not the root of its tree itF’, we defineRevenues(e) to be 0, and if it is the root, we sé&tevenues(e) to be the
weight of all edges ofi/, in the tree. Clearly) _ Revenues(e) = w(Ma).

We defineRevenues(e) to be equal to the weight of iff e is an edge inM/, that does not intersect any
other such edge. (In which case, it follows thatis the root of its tree.) We prove th&l{ Revenues(e)] >
w, which proves the lemma, sing€, Revenues(e) = w(Ms).

First, note that the probability that any edgadded tol/; intersects an edge added later is at mgst
For each vertex of R contained ire, the probability that intersects a later edge because: @ at mostl /2d,
as with probabilityl — 1/2d, the next edge containing considered by MULATE will be added to)M;. Ase
contains onlyd vertices inR, the desired probability is at mosf2. (Every vertex ofL is incident to at most
one edge inV/y, and sce cannot intersect any other edge through its vertei )it follows that the probability
that anyv. € F has a child is at most/2. We also count the expected number of childrervgfthe edge
corresponding to each child of must share some vertex withand the expected number of children through
a particular vertex is at mo$t:° | ip(1 — p)* = (1 — p)/p. Ase containsd vertices ofR, the expected number
of children ofv, is at mostd(1 — p)/p = 1/(2 — 1/d); sinced > 2, the expected number of children is at most
2/3. It follows that the expected size of a subtree rooted. & at most3.

Note thatRevenues(e) and Revenues(e) are both if v, is not the root of its tree i". Conditioned orv,
being a rootE[Revenues(e)] < 3w(e), ase is the heaviest edge in its tree, and the expected size ofetbest
at most3. E[Revenues(e)] is at leastw(e)/2, ase intersects no previously added edges, and with probability
at leastl/2, it intersects no edge added d, later. Therefore, the ratio of these expectations is at ost
completing the proof. O

Now, we define our final algorithmA1PLEANDPRICE for the HVM problem:

SAMPLEANDPRICE(|L|, R)

k — Binom(|L|,1 — 5;)

Let L' be the firstt elements ofl..

M, — GREEDY(G(L', R)).

For eachv € V:
Setprice(v) to be the weight of the edge incidentdan M, .

M—10

For each subsequeht L — L':
Let e be the highest-weight edge containihguch that for each € e, w(e) > price(v)
If eis disjoint fromA/, adde to M.
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Figure 1: Relationships between the HVM problem and vargpexial cases.

As before, since the input is a random permutatiof of’ is a subset of. in which every vertex is selected
independently with probability — 1/2d, and the matching/ is at least as good ak/; from SIMULATE.
Therefore, we have proved the following theorem:

Theorem 3.5 SAMPLEANDPRICE is anO(d?)-competitive algorithm for the HVM secretary problem.

Note thatM may also contain extra edges that occur earlier in the patinatthan edges they intersect; for
the BVM problem, this was the difference between Lerimé 2ditha stronger bourid 2.5. We do not provide
a tighter analysis similar to Lemna 2.5 for the HVM problenthis extended abstract, nor make an attempt
to optimize the constants of Lemrhal3.4. In particular, f@& HEM problem withd = 2 (finding an online
matching in a non-bipartite graghi(V, F), given a random permutatation 8%, we have a constant bound on
the competitive ratio; a smaller constant can easily beidda

4 Secretary Problemswith Groups

Consider a secretary-type problem in which, instead ofivetwea random permutation of the elements, ele-
ments can be grouped by an adversary. The algorithm recigeasumber of groups in advance, instead of
the number of elements. However, once the groups have bestrected, they arrive in random order; when
a group arrives, the algorithm can see all its elements at.oNote that the groups are fixed in advance; the
adversary cannot construct groups in response to the thigosi choices or the set of groups seen so far. The
effect of such grouping on the difficulty of the problem is momediately clear: The adversary can ensure that
some permutations of the element set never occur, whichtrrigke the problem more difficult. On the other
hand, as the algorithm is allowed to see several elementgat G may be easier to compute a good solution.

For instance, consider the classical secretary probleim gviiups. An optimal algorithm will never hire
any but the best secretary from a group, and it is easy torobtai-competitive algorithm: Ignore all but the
best secretary from each group, and run the standard sgcadgarithm on these. That is, observe a constant
(1/e) fraction of the groups, and note the value/price of the bestetary seen so far. From the rest of the input,
hire the best secretary from the first group with a secretatyett this price. Perhaps a reason this problem is
as easy as the original version is that only one element is sekected.

By way of contrast, consider the following matching probjegwen restricted to bipartite graphs: The
algorithm is initially given the vertex set of a bipartiteagh, and an adversary groups the edges arbitrarily. The
groups arrive in random order; when a group arrives, theritgo sees the weights of all edges it contains. The
goal is to find a maximum-weight matching; note that as a speeise of HEM withi = 2, we have arO(1)-
competitive algorithm for this problem without edge growpi A natural Sample-And-Price algorithm for this
problem is as follows: Look at a constant fraction of the ipand construct a matching with these edges (either
the optimal matching, or the greedy matchings we used inrh@qus sections). Use the weights of edges in the
matching to set vertex prices, and in the remainder of thetjrgelect an edge if its weight is at least the price of
each of its endpoints, and if it does not conflict with edgesaaly selected. Unfortunately, this algorithm does
not work: Consider a bipartite graghi(L U R), with L = {l1,ls,...,l,} andR = {ry,rs,...,r,}. We have
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two groups of edgest; = {(l;,r;)|1 <i < n}, withw((l;,r;)) = 1+ 2ie, andEy = {(li,ri+1)|1 < i < n},
with w((l;,741)) = 1+ (2i + 1)e. Assuminge < 1/n?, E; corresponds to an optimal matching, with
weight~ n. If E; arrives first, the price of each is 1 + 2ie. Subsequently, wheRs arrives,w((l;—1,7;)) =
1+ (2i — 1)e, and hence no edge &% beats the price of its right endpoint. i arrives first, the price of each
l;is 1+ (2i 4+ 1)e. Subsequently, wheh; arrives,w((l;,r;)) = 1 + 2ie, and so no edge excefit,, r,) beats
the price of its left endpoint, for a total revenue-ofi.

We believe, therefore, that the introduction of groupscfféhese secretary-type problems in non-trivial
ways, and these problems are likely to be of theoreticatéstein addition, they have applications to problems
where groups occur naturally, and we do not receive a randemmuytation of the entire element set. To
take another example from the advertising world, when a hatcplans a campaign, she may submit to the
reservation system multiple ads, together with the slotshith each ad can be placed, and a price for each
ad-slot combination. Even if the merchants arrive in a ramawoder, this does not correspond to a random
permutation of ads, and hence our previous analysis is netttyi applicable. We model this (as in BVM) as
an edge-weighted matching problem on a bipartite gi@pbh U R, E) in which vertices ofL. may be grouped,;
here, the groups correspond to the set of ads for a giventibrerThe algorithm initially receive® (the set
of slots), and the number of advertisers/groups; the admwersan construct groups fromarbitrarily. Once the
groups have been fixed, a random permutation of the groupeis and when a group arrives, the algorithm
must decide which ads to accept, and where to place themwagsaldecisions are irrevocable. We refer to
this as the BVM problem with groups.

Theorem 4.1 There is anO(log n)-competitive algorithm for the BVM problem with groups.

It is easy to prove this theorem using standard techniquespt the first half of the vertices, and ledenote
the weight of the heaviest edge seen so far. Pick an integeiformly at random in0, 1 + [log, n]], and
set a threshold ofv/27. In the second half, greedily construct a matching usingesdgith weight above
the threshold. (See, for instance, Theorem 3.2 0f [1] folyaig of an essentially similar algorithm.) For
completeness, we give a proof of Theorlen] 4.1 in Seétioh AtBehppendix.

A natural question is whether one can find a constant-cotiygetilgorithm for BVM with groups. Note
that one must be careful about using Sample-And-Price ighgas: First, as the example above shows, the
natural algorithm with groups of edges instead of vertiaesschot work. Second, one might sample a constant
fraction of groups, construct a matchifg; on the sampled groups, and then ude to set prices. However,
once prices have been set in this way, the edges assignedao@gmay not be the same as the edges that
would have been assigneddan M if ¢ had been sampled. This was not the case for the basic BVMaarobl
If an edge(l, ) is in Ms, then by construction — fixing all other coin flips — if the céan [ had come up heads
instead of tails(l,r) would be inM;. As the example in Figurel 2 shows, this desirable propertionger
holds once groups are introduced.

Figure 2: Example for BVM with groups. Vertices A,C are in gpol, and vertex B is in group 2. Using the
SaMPLEANDPRICE algorithm, if group 2 is sampled and group 1 is not, both edigeglent to A and C beat
their prices, and hence are added\g. If both groups are sampled, A will be matched to X and B to Wi,
while C will remain unmatched.

We conjecture that the following algorithmaSPLEWITHGROUPSIs constant-competitive for BVM with
Groups. Hereg denotes the set of groups:



SAMPLEWITHGROUPY|G|, R)
Sample each group with probabilipy
Construct a greedy matching; on the set of sampled grougs.
M2 — @
For each groug in G — G':
Let £’ denote the edges assigned to verticeg iof the greedy matching o’ U g.
My — MyUE',
Ms «— Moy
For eachr € R:
If r has degree- 1 in Ms:
Delete all edges incident tofrom M.

It is easy to see thdi[w(M;)] > pOPT/2. By construction, the edges assignedyto M, are precisely
those that would have been assigned to M if g had been sampled. (Hence, this algorithm differs from the
natural AIMPLEANDPRICE.) Therefore, it follows that the probability an edge cdmites toM; is (1 — p)/p
times the probability it contributes t@f;. If p = 1/2, it follows thatE[w(Ms)] = E[w(M;)], and further, that
the expected degree ofc R in M, is equal to its expected degree Ay, which is at most 1 sincé/; is a
matching. This does not suffice to give a lower bound on theebgal weight of\/3, but we conjecture that the
expected weight oll/3 is at most a constant factor lower than thaf\éf.

Conjecture 1 SAMPLEWITHGROUPSIS constant-competitive for the BVM problem with groups.

5 Graphic Matroids

In this section, we describe2z-competitive algorithm for the Graphic Matroid Secretarglgem. Here, we
are initially given the set of verticeg of an undirected edge-weighted gragh= (V, E') together with the
size of its edge séfZ|. The edges of the graph appear in a random order, and thesgoadcept a maximum-
weight subset of edgek that does not contain any cycles. As always, the decisiordepd an edge must be
made upon its arrival, and cannot be revoked.

This problem is equivalent to finding the maximum-weightrspag tree (assuming is connected) and is
also equivalent to finding the maximum-weight independentrsthe graphic matroid defined by the gragh
Babaioff et al. [1] give a 16-competitive algorithm for thecsetary version of this problem based on a related
algorithm for transversal matroids. We give a simple reidncto the classical secretary problem, losing a
factor of2 in the reduction. In this way, we obtair2a ~ 5.436-competitive algorithm for the Graphic Matroid
Secretary problem.

Fix an orderinguy, vs, . . ., v, ON the vertices ofs. Consider two directed graphs: gra@y is obtained by
orienting every edge aff from higher numbered to lower numbered vertex, and g@plioy orienting every
edge from lower to higher numbered vertex.

Our online algorithm initially flips a fair coinX € {0,1}. For each vertex independently, it runs a
secretary algorithm to find the maximum-weight edge leaviimg G x. The output of the algorithm i8”, the
union of all edges accepted by the individual secretaryrdatgus. Since the grapt¥x is acyclic and each
vertex has at most one outgoing edge, the set of edgesust be acyclic even in the undirected sense.

It remains to show a lower bound on the weightfdf For each vertex, let hx (v) be the heaviest edge
leaving vertexv in Gx. Let Fix = {hx(v) | v € V}. Let F* be a maximum-weight acyclic subgraph®@f

Proposition 5.1 3 i w(ho(v)) +w(h1(v)) > > .cp- w(e).

Conditioned on the coin fliX, each secretary algorithm recovers at ldastfraction of the weight of the
heaviest edge leaving its vertex. Heng@u(F') | X = 2] = lw(F,) for z = 0,1. Using Propositiofi 5]1,
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Ew(F")] =1 GEwF) | X =0+ 1Ew(F') | X =1]) > £w(F*). Therefore, we obtain the following
theorem:

Theorem 5.2 There is &e-competitive algorithm for the graphic matroid secretargigem.

6 Conclusionsand Open Problems

We list several problems that remain to be solved:

e Animproved understanding of groups — and their contributethe difficulty of secretary-type problems
—is likely to be of interest. In particular, it may be possild find a constant-competitive algorithm for
the BVM problem with groups.

e Few lower bounds for these problems are known beylglador the original secretary problem; obtaining
such bounds may require new techniques.

¢ In the basic BVM problem, we lose a factor of 2 by constructingedy matchings. If, instead, we mod-
ified our algorithm to set prices using an optimal matchidg on the sampled vertices, is the resulting
algorithm 4-competitive? Is it evefi(1)-competitive?

¢ Finally, obtaining arO(1)-competitive algorithm for the general matroid secretagbfem is still open,
though the competitive ratios for important special cased @s transversal and graphic matroids have
been reduced to small constants.

Acknowledgments. We would like to thank Florin Constantin, Jon Feldman, and&hukrishnan for helpful
discussions on BVM and related problems.
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A Omitted Proofs

A.1 Proof of Lemmal2.5

We prove Lemm@ 2|5 below, showing that\s>LEANDPRICE is 8-competitive for the BVM problem.

For eachw € R, we let Revenues(v) be the revenue earned byn M, which is the total weight of edges
in M, incident tov. Similarly, Revenues(v) denotes the weight of the (at most one) edge\hif incident
to v. Let P, be the probability thab is incident to: edges inM,. Finally, we letE[Revenues(v)|i] and
E[Revenues(v)|i] be the expected revenue earnedvbiyn M, and M5 respectively, conditioned on being
incident toi edges inMs.

First, we note thall[Revenues(v)]i] = Zteverue2 0l a5 for each set of coin flips in whiehhas degree

(3
in M, we may see any of theedges incident to first in the random permutation; on average, then, we receive
al/i fraction of Revenues(v). We then have the following equations:

E[Revenues(v)] = iH'E[Revenueg(v)\i]. 1)

Revenueg( )|7] .

E[Revenueg(v)] = ZP 2)

For ease of notation below, we uggto denotek|Revenues(v)|i]. We wish to boundE[Revenues(v)] in
terms ofE[Revenues(v)], and we do this as follows: First, we show thiat< (1—p)P;_, andw; < ﬁwi_l.
Next, we prove that subject to these constraints, the wast-ratio of these two expectations occurs when
all the constraints hold with equality. We can then evalub& sums, and show th&|Revenues(v)] >
pE[Revenues(v)], completing our proof.

Itis easy to see that; < -“w;_1; consider any partial history ofi8ULATE in whichi — 1 edges incident
to v have been added tb/, so far; as we process edges in decreasing order of weighttitredge must
be the Iightest of those seen so far. As this is true for eaalti§b) history, it holds in expectation, and so
w; < (1 — p)P;_4, consider a partial history until thg — 1)st edge
has just been addetMg will havez -1 edges incident to if the coin for the next edge incident toconsidered
by SMULATE comes up “heads”, with probability. M, will have i edges incident to if the coin for the next
edge incident te comes up “tails”, and that for the following edge comes upsewith probability(1—p) -pﬂ
Again, as this holds for each history, we haWe< (1 — p)P;_;.

To see that the worst-case ratio occurs when all these egmtstthold with equality, notice that the ratio
between successive terms of Equations (1) and (2) is inagea3 he ratio between théh terms is simply
i. Let o denote the worst-case ratio of the expectations; from Le@@awe already know that < p?. If
Jj = 1[1/a], for1 < i < j, the ratio between théh term of the two sums is at most while fori > j, the
ratio is greater than. Consider a choice af;'s and P;’s such that the ratio between (1) and (2) be as large as
possible, and suppose the constraintsPandw; do not all hold with equality. Lek be an index such that
P, < (1—=p)Pi_j0rw < %wk_l. If & > j, then by increasing’. or w;, we do not violate any constraint,
and the increase in (1) is greater thaimes the increase in (2). Similarly, if < j, by decreasing®,_; or
wg_1 to achieve equality, and also decreasiig .. P,_o Or wy ... wg_o t0 maintain feasibility, the decrease
in (1) is less tham times the decrease in (2). In either of these situationsparease the ratio between the two
sums, contradicting our initial setting af;, P;.

It is possible that there is only one more edge incident, im which casev will have i edges with probability1 — p). However,
this only helps the analysis. Alternatively, one can asstiraexistence of a large number of “zero-weight” edges emidov.
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Finally, we can now evaluate this worst case ratio. Setiing- ﬁwl andP; = (1 — p)P,—1, we find:

E[Revenues(v)] = Zz’wlPl(l —p)t =w P /p*
i=1

E[Revenues(v)] = ZwlPl(l —p)! = w, P, /p = pE[Revenuey(v)]
i=1

As )", E[Revenuesz(v)] = Elw(Mz)] > (1 — p)OPT/2, we haveE[w(M3)] > p(1 — p)OPT/2, completing
the proof of Lemma215.

A.2 Other Proofs

Proof of Theorem We show that the algorithm of Theordm14.10%log n)-competitive for BVM with
groups, closely following the analysis 0f [1] for &1log k)-competitive algorithm for general matroids. Recall
that the algorithm observes the first half of the verticesl pioks a random integer € [0,1 + [logn]]. If w

is the weight of the heaviest edge seen so far, the algorittmasthreshold of /21, and in the second half,
greedily constructs a matching using edges of weight gréfads this threshold.

Let OPT be an optimal matching; we also abuse notation andOUiB€ to refer to the weight of this
matching, though the meaning will be clear from context. duetw-, ... w; denote the weights of edges in
OPT, such thaty; > w;4; for 1 <i < k. Letq denote the largest index ji, k] such thatv, > w, /n. Clearly,
>4, w; > OPT/2, as the remaining edges all have weight less ithgm, and there are fewer thanof them.
For any set of edgeB, we usen;(F’) to denote the number of edgesAnhwith weight at leastv;, andm;(F’)
to denote the number of edgeshinwith weight at leastv; /2. Now, we have:

q q-—1
Z w; = (Z n;(OPT)(w; — wi+1)> + ny(OPT)wy
i=1 i=1

Let M be the matching returned by our algorithm. We lower boundatbight of M as follows:

qg—1
w(M) > 3 (; mi(M)(u; ~ wm)) + DalM)0
In order to obtain arO(logn)-competitive algorithm, it suffices to show that for eath< i < g,

E[m;(M)] > n;(OPT)/O(logn). First, consider the case of= 1: n;(OPT) = 1, and we argue that
E[mi(M)] > 1/4([logn] + 1). With probability 1/4, the vertexv incident to the heaviest edge appears in
the second half, and the heaviest edge not incident to amgxvefv’'s group appears in the first half. If this
occurs, and the algorithm pickis= 0 (which happens with probability/([log n] + 1)), then the only edges
with weight above the threshold are those incident to vestinv's group. Thereore, the greedy algorithm will
select the heaviest edge with probabilityt([log n] + 1), and hencé[m;(M)] > 1/4([logn] + 1).

We now complete the argument for each- 1. Letv be the vertex incident to the heaviest edge. We
consider two cases: First, that at least half the edges of WiBhTweight at leastv; are incident to vertices not
in the same group as and second, that more than half these edges are incideeitices ofv’'s group.

In the former case, suppose thas seen in the first half. Lat be the weight of this heaviest edge, and let

i’ be the smallest integer i, 1 + [logn]] such thaty/27 < wiE With probability m, the algorithm

picksj = i, and the threshold is set to be/2" > w; /2. Let X denote the event that the threshold is set to be

Note thatw may be greater tham:, as the heaviest edge may not bejit. However, it is easy to see that < 2w;, and since
w; > w1 /n, there always exists such an indéx
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w/2"; as we have see®r[X] > 1/2([logn] + 1). We show that conditioned ol E[m;(M)] is sufficiently
large.

Recall that OPT contains a matching of sizessing edges of weight at least; it follows that in expectation,
using edges of this weight, there is a matching in the secatfbhsize at least/4. (This is because at least
half of these edges are in other groups; even conditioned appearing in the first half, each of the remaining
> i/2 edges could appear in either half.) Since we construct adgramtching using edges of weight at
leastw; /2, the expectgd size of this matching is at leg® Hence, with probability at lea oz nTF1)”
E[m;(M)] > /8. Thatis,E[m;(M)] > i/16([logn] + 1).

We now consider the second case, when more than half the efigeRT with weight at leastv; are in
the same group as Letu be the vertex outside this group incident to the heaviedtiweadge. Suppose’'s
group appears in the first half, amt group in the second. Let be the weight of the heaviest edge incident
to u; if w < w; and we pickj = 0, theonly edges above the threshold will be vertices’mgroup. Since we
construct the greedy matching using only the group,aind there exists a matching in this group with more
thani/2 edges of weightv;, the matching we construct has at legst edges of weight at least;. If w > w;,
then with probabilityl /[log n] + 1, we pick an index such thatw; > w/27 > w;/2. Again, we will find a
mat(_:hlng in Whl(_:h at Iegs;‘/zl edges have weight at least/2. Therefore, with probability at Ieaﬁfm,
we find a matching of size at leastd. ThereforeE[m;(M)] > i/16([logn]| + 1).

Therefore, we hav&[w(M)] > %m S w; > OPT/64([log n] + 1). O

Proof of Proposition[5.1l Let 4(v) denote the heaviest edge incidenvi@learly ) w(ho(v)) +w(hi(v)) >
>, w(h(v)). It remains to show that this latter sum is at least, ... w(e). To see this, consider the tré¢,
and root it arbitrarily. For each edge= (u,v) € F*, the weight ofe is at mosth(v), wherew is the vertex
further from the root. Each vertexis charged by at most one edge, andspw(h(v)) > > cp-w(e). O
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