Abstract
The design of decision procedures for combinations of theories sharing some arithmetic fragment is a challenging problem in verification. One possible solution is to apply a combination method à la Nelson-Oppen, like the one developed by Ghilardi for unions of non-disjoint theories. We show how to apply this non-disjoint combination method with the theory of abelian groups as shared theory. We consider the completeness and the effectiveness of this non-disjoint combination method. For the completeness, we show that the theory of abelian groups can be embedded into a theory admitting quantifier elimination. For achieving effectiveness, we rely on a superposition calculus modulo abelian groups that is shown complete for theories of practical interest in verification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Transactions on Computational Logic 10(1) (2009)
Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Information and Computation 183(2), 140–164 (2003)
Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories: Combining decision procedures. Journal of Symbolic Computation 21(2), 211–243 (1996)
Bonacina, M.P., Echenim, M.: T-decision by decomposition. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 199–214. Springer, Heidelberg (2007)
Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and undecidability results for Nelson-Oppen and rewrite-based decision procedures. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 513–527. Springer, Heidelberg (2006)
Boudet, A., Jouannaud, J.-P., Schmidt-Schauß, M.: Unification in boolean rings and abelian groups. In: Kirchner, C. (ed.) Unification, pp. 267–296. Academic Press, London (1990)
Chenadec, P.L.: Canonical Forms in Finitely Presented Algebras. Research Notes in Theoretical Computer Science. Pitman-Wiley, Chichester (1986)
de Moura, L.M., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 475–490. Springer, Heidelberg (2008)
Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)
Eklof, P.C., Sabbagh, G.: Model-completions and modules. Annals of Mathematical Logic 2, 251–295 (1971)
Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive combination framework. ACM Transactions on Computational Logic 9(2), 1–54 (2008)
Godoy, G., Nieuwenhuis, R.: Superposition with completely built-in abelian groups. Journal of Symbolic Computation 37(1), 1–33 (2004)
Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press, Cambridge (1993)
Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)
Lynch, C., Tran, D.-K.: Automatic Decidability and Combinability Revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 328–344. Springer, Heidelberg (2007)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transaction on Programming Languages and Systems 1(2), 245–257 (1979)
Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable Extensions of Abelian Groups. Research Report, INRIA, RR-6920 (2009)
Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability procedures for combination of theories sharing integer offsets. In: TACAS 2009. LNCS, vol. 5505, pp. 428–442. Springer, Heidelberg (2009)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch.7, vol. I, pp. 371–443. Elsevier Science, Amsterdam (2001)
Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. J. ACM 28(2), 233–264 (1981)
Plotkin, G.: Building-in equational theories. Machine Intelligence 7, 73–90 (1972)
Stuber, J.: Superposition theorem proving for abelian groups represented as integer modules. Theoretical Computer Science 208(1-2), 149–177 (1998)
Waldmann, U.: Superposition and chaining for totally ordered divisible abelian groups. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 226–241. Springer, Heidelberg (2001)
Waldmann, U.: Cancellative abelian monoids and related structures in refutational theorem proving (Part I,II). Journal of Symbolic Computation 33(6), 777–829 (2002)
Zhang, T.: Arithmetic integration of decision procedures. PhD thesis, Department of Computer Science, Stanford University, Stanford, US (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nicolini, E., Ringeissen, C., Rusinowitch, M. (2009). Combinable Extensions of Abelian Groups. In: Schmidt, R.A. (eds) Automated Deduction – CADE-22. CADE 2009. Lecture Notes in Computer Science(), vol 5663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02959-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-02959-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02958-5
Online ISBN: 978-3-642-02959-2
eBook Packages: Computer ScienceComputer Science (R0)