Skip to main content

Research on Complete Algorithms for Minimal Attribute Reduction

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5589))

Included in the following conference series:

  • 2740 Accesses

Abstract

Minimal attribute reduction plays an important role in both theory and practice, but it has been proved that finding a minimal reduct of a given decision table is a NP-hard problem. Some scholars have also pointed out that current heuristic algorithms are incomplete for minimal attribute reduction. Based on the decomposition principles of a discernibility function, a complete algorithm CAMARDF for finding a minimal reduct is put forward in this paper. Since it depends on logical reasoning, it can be applied for all decision tables after their discernibility functions constructed reasonably. The efficiency of CAMARDF is illustrated by experiments with UCI data sets further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)

    Article  MATH  Google Scholar 

  2. Zhao, Y., et al.: A general definition of an attribute reduct. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., ÅšlÈ©zak, D. (eds.) RSKT 2007. LNCS, vol. 4481, pp. 101–108. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R., et al. (eds.) Intelligent Decision Support Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  4. Hoa, N.S., Son, N.H.: Some efficient algorithms for rough set methods. In: Pro. of the Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 1996), vol. 2, pp. 1451–1456 (1996)

    Google Scholar 

  5. Xu, Z.Y., et al.: A quick attribute reduction algorithm with complexity of max(O(|C||U|,O(|C|2 |U/C|)). Journal of Computers 29(3), 391–399 (2006)

    Google Scholar 

  6. Miao, D.Q., Wang, J.: Information-based algorithm for reduction of knowledge. In: Pro. of the 1997 IEEE International Conference on Intelligent Processing Systems (ICIPS 1997), vol. 2, pp. 1155–1158 (1997)

    Google Scholar 

  7. Wang, G.Y., et al.: A comparative study of algebra viewpoint and information viewpoint in attribute reduction. Fundamenta Informaticae 68(3), 289–301 (2005)

    MATH  Google Scholar 

  8. Hu, X.H., Cercone, N.: Learning in relational databases: A rough set approach. International Journal of Computational Intelligence 11(2), 323–338 (1995)

    Article  Google Scholar 

  9. Wang, J., Miao, D.Q.: Analysis on attribute reduction strategies of rough set. Journal of Computer Science and Technology 13(2), 189–193 (1998)

    Article  MATH  Google Scholar 

  10. Yao, Y.Y., Zhao, Y., Wang, J.: On reduct construction algorithms. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS, vol. 4062, pp. 297–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Starzyk, J.A., Nelson, D.E., Sturtz, K.: A mathematical foundation for improved reduct generation in information systems. Knowledge and Information Systems 2, 131–146 (2000)

    Article  MATH  Google Scholar 

  12. Asuncion, A., Newman, D.U.: Repository of machine learning databases. University of California, Irvine (2007), http://archive.ics.uci.edu/ml/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, J., Miao, D., Feng, Q., Sun, L. (2009). Research on Complete Algorithms for Minimal Attribute Reduction. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02962-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02961-5

  • Online ISBN: 978-3-642-02962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics