Skip to main content

Protein Comparison by the Alignment of Fuzzy Energy Signatures

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5589))

Included in the following conference series:

  • 2703 Accesses

Abstract

Describing protein structures in terms of their energy features can be a key to understand how proteins work and interact to each other in cellular reactions. This can be also a base to compare proteins and search protein similarities. In the paper, we present protein comparison by the alignment of protein energy signatures. In the alignment, components of energy signatures are represented as fuzzy numbers. This modification increases the sensitivity of the alignment and guarantees the approximate character of the method, at the same time. The effectiveness of the developed alignment algorithm is tested by incorporating it in the new FS-EAST method (Fuzzy Signatures - Energy Alignment Search Tool), which allows to seek similar structural regions of proteins.

Scientific research supported by the Ministry of Science and Higher Education, Poland in years 2008-2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gibas, C., Jambeck, P.: Developing Bioinformatics Computer Skills. O’Reilly, Sebastopol (2001)

    Google Scholar 

  2. Allen, J.P.: Biophysical Chemistry. Wiley-Blackwell, Chichester (2008)

    Google Scholar 

  3. Mrozek, D., et al.: Energy Profiles in Detection of Protein Structure Modifications. In: IEEE Conference on Computing and Informatics, Kuala Lumpur, pp. 1–6 (2006)

    Google Scholar 

  4. Małysiak, B., et al.: Signal Transduction Simulation in Nanoprocesses Using Distributed Database Environment. In: MSO 2005, pp. 17–22. ACTA Press (2005)

    Google Scholar 

  5. Lodish, H., Berk, A., Zipursky, S.L., et al.: Molecular Cell Biology, 4th edn. W. H. Freeman and Company, NY (2001)

    Google Scholar 

  6. Mrozek, D., Małysiak, B.: Searching for Strong Structural Protein Similarities with EAST. CAMES 14, 681–693 (2007)

    Google Scholar 

  7. Małysiak, B., Momot, A., Kozielski, S., Mrozek, D.: On Using Energy Signatures in Protein Structure Similarity Searching. In: Rutkowski, L., et al. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 939–950. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising Similarities in Structure Comparison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)

    Article  Google Scholar 

  9. Holm, L., Kaariainen, S., Rosenstrom, P., Schenkel, A.: Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008)

    Article  Google Scholar 

  10. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)

    Article  Google Scholar 

  11. Krasnogor, N., Pelta, D.A.: Measuring the similarity of protein structures by means of the universal similarity metric. Bioinformatics 20(7), 1015–1021 (2004)

    Article  Google Scholar 

  12. Friedberg, I., Harder, T., Kolodny, R., et al.: Using an alignment of fragment strings for comparing protein structures. Bioinformatics 23(2), 219–224 (2007)

    Article  Google Scholar 

  13. Rodrigo, J., Barbany, M., et al.: Comparison of Biomolecules on the Basis of Molecular Interaction Potentials. J. Braz. Chem. Soc. 13(6), 795–799 (2002)

    Article  Google Scholar 

  14. Ji, H., Li, H., Flinspach, M., Poulos, T.L., Silverman, R.B.: Computer Modeling of Selective Regions in the Active Site of Nitric Oxide Synthases: Implication for the Design of Isoform-Selective Inhibitors. J. Med. Chem., 5700–5711 (2003)

    Google Scholar 

  15. Leach, A.R.: Molecular Modelling. Principles and Applications, 2nd edn. Pearson Education Ltd., London (2001)

    Google Scholar 

  16. Cornell, W.D., Cieplak, P., et al.: A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  17. Berman, H.M., Westbrook, J., et al.: The Protein Data Bank. Nucleic Acids Res 28, 235–242 (2000)

    Article  Google Scholar 

  18. Ponder, J.: TINKER - Software Tools for Molecular Design, Dept. of Biochemistry & Molecular Biophysics, Washington University, School of Medicine, St. Louis (2001)

    Google Scholar 

  19. Jian-Kui, G., Qing, W., Zhenhua, H., et al.: Estimating Similarity Over Data Streams Based on Dynamic Time Warping. In: Proc. of 4th Conference Fuzzy Systems and Knowledge Discovery, 2007, pp. 53–57. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  20. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  21. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

  22. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  23. Heger, A., et al.: The global trace graph, a novel paradigm for searching protein sequence databases. Bioinformatics 23, 2361–2367 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mrozek, D., Małysiak-Mrozek, B., Kozielski, S. (2009). Protein Comparison by the Alignment of Fuzzy Energy Signatures. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02962-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02961-5

  • Online ISBN: 978-3-642-02962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics