Skip to main content

Lattice Derived by Double Indiscernibility and Computational Complementarity

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5589))

Included in the following conference series:

  • 2703 Accesses

Abstract

We here concentrate on equivalence relation, and show that the composition of upper approximation of one equivalence relation and the lower one of the other equivalence relation can form a lattice. We also show that this method can be used to define computational complementarity in automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Information systems-theoretical foundations. Information Systems 6, 205–218 (1981)

    Article  MATH  Google Scholar 

  2. Pawlak, Z.: Rough Sets. Intern. J. Comp. Inform. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  3. Polkowski, L.: Rough Sets, Mathematical Foundations. Physical-Verlag, Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  4. Gunji, Y.-P., Haruna, T.: Non-Boolean lattice derived by double indiscernibility (submitted to LNCS for rough sets)

    Google Scholar 

  5. Svozil, K.: Randomness and Undecidability in Physics. World Scientific, Singappore (1993)

    Book  MATH  Google Scholar 

  6. Finkelstein, D.: Holistic methods in quantum logic. In: Castell, L., von Weizsacker, C.F. (eds.) Quantum Theory and the Structure of Time and Space. Carl Hanser Verlag, Munchen (1979)

    Google Scholar 

  7. Claude, C., Claude, E., Svozil, K., Yu, S.: Physical versus computational complementarity. Int. J. Theor. Phys. 36, 1495–1523 (1997)

    Article  MATH  Google Scholar 

  8. Järvinen, J.: Lattice theory for rough sets. In: Peters, J.F., Skowron, A., Düntsch, I., GrzymaÅ‚a-Busse, J.W., OrÅ‚owska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gunji, YP., Haruna, T., Kitamura, E.S. (2009). Lattice Derived by Double Indiscernibility and Computational Complementarity. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02962-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02961-5

  • Online ISBN: 978-3-642-02962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics