Abstract
A representation theorem for complete lattices by double approximation systems proved in [Gunji, Y.-P., Haruna, T., submitted] is analyzed in terms of category theory. A double approximation system consists of two equivalence relations on a set. One equivalence relation defines the lower approximation and the other defines the upper approximation. It is proved that the representation theorem can be extended to an equivalence of categories.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge Univ. Press, Cambridge (2002)
Gunji, Y.-P., Haruna, T.: Non-Boolean Lattices Derived on the Basis of Double Indiscernibility (submitted)
Johnstone, P.T.: Stone spaces. Cambridge Univ. Press, Cambridge (1982)
MacLane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998)
Pawlak, Z.: Information systems–theoretical foundations. Information Systems 6, 205–218 (1981)
Pawlak, Z.: Rough sets. Intern. J. Comp. Sci. 11, 341–356 (1982)
Polkowski, L.: Rough Sets, Mathematical Foundations. Physical-Verlag, Heidelberg (2002)
Yao, Y.Y.: Concept lattices in rough set theory. In: Fuzzy Information, 2004, Processing NAFIPS 2004, vol. 2, pp. 796–801 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haruna, T., Gunji, YP. (2009). Double Approximation and Complete Lattices. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-02962-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02961-5
Online ISBN: 978-3-642-02962-2
eBook Packages: Computer ScienceComputer Science (R0)