Abstract
A game-theoretic approach for learning optimal parameter values for probabilistic rough set regions is presented. The parameters can be used to define approximation regions in a probabilistic decision space. New values for loss functions are learned from a sequence of risk modifications derived from game-theoretic analysis of the relationship between two classification measures. Using game theory to maximize these measures results in a learning method to reformulate the loss functions. The decision-theoretic rough set model acquires initial values for these parameters through a combination of loss functions provided by the user. The new game-theoretic learning method modifies these loss functions according to an acceptable threshold.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ciucci, D.: A unifying abstract approach for rough models. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 371–378. Springer, Heidelberg (2008)
Duntsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artificial Intelligence 106, 109–137 (1998)
Herbert, J.P., Yao, J.T.: A game-theoretic approach to competitive learning in self-organizing maps. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 129–138. Springer, Heidelberg (2005)
Herbert, J.P., Yao, J.T.: Rough set model selection for practical decision making. In: Proceedings of Fuzzy Systems and Knowledge Discovery (FSKD 2007), vol. III, pp. 203–207 (2007)
Herbert, J.P., Yao, J.T.: Game-theoretic risk analysis in decision-theoretic rough sets. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 132–139. Springer, Heidelberg (2008)
Li, T.R., Ruan, D., Geert, W., Song, J., Xu, Y.: A rough sets based characteristic relation approach for dynamic attribute generalization in data mining. Knowledge-Based Systems 20, 485–494 (2007)
Lingras, P., Chen, M., Miao, D.: Rough multi-category decision theoretic framework. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 676–683. Springer, Heidelberg (2008)
Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)
Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Sciences 177, 41–73 (2007)
Yao, J.T., Herbert, J.P.: A game-theoretic perspective on rough set analysis. Journal of Chongqing University of Posts and Telecommunications 20, 291–298 (2008)
Yao, J.T., Herbert, J.P.: Financial time-series analysis with rough sets. Applied Soft Computing 9(3), 1000–1007 (2009)
Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Systems 20, 287–297 (2003)
Yao, Y.Y.: Decision-theoretic rough set models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)
Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. International Journal of Man-machine Studies 37, 793–809 (1992)
Zhou, X., Li, H.: A multi-view decision model based on decision-theoretic rough set. In: Wen, P., et al. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 650–657. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Herbert, J.P., Yao, J. (2009). Learning Optimal Parameters in Decision-Theoretic Rough Sets. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_77
Download citation
DOI: https://doi.org/10.1007/978-3-642-02962-2_77
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02961-5
Online ISBN: 978-3-642-02962-2
eBook Packages: Computer ScienceComputer Science (R0)