Skip to main content

Improving Probabilistic Interpretation of Medical Diagnoses with Multi-resolution Image Parameterization: A Case Study

  • Conference paper
Artificial Intelligence in Medicine (AIME 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5651))

Included in the following conference series:

Abstract

Clinicians strive to improve established diagnostic procedures, especially those that allow them to reach reliable early diagnoses. Diagnostics is frequently performed in a stepwise manner which consists of several consecutive tests (steps). The ultimate step in this process is often the “gold standard” reference method. In stepwise testing, results of each diagnostic test can be interpreted in a probabilistic manner by using prior (pre-test) probability and test characteristics (sensitivity and specificity). By using Bayes’ formula on these quantities, the posterior (post-test) probability is calculated. If the post-test probability is sufficiently high (or low) to confirm (or exclude) the presence of a disease, diagnostic process is stopped. Otherwise, it proceeds to the next step in sequence. Our case study focuses on improving probabilistic interpretation of scintigraphic images obtained from the penultimate step in coronary artery disease diagnostics. We use automatic image parameterization on multiple resolutions, based on texture description with specialized association rules. Extracted image parameters are combined into more informative composite parameters by means of principle component analysis, and finally used to build automatic classifiers with machine learning methods. Experiments show that the proposed approach significantly increases the number of reliable diagnoses as compared to clinical results in terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comer, M.L., Delp, E.J.: Segmentation of textured images using a multiresolution gaussian autoregressive model. IEEE Transactions on image processing 8(3), 408–420 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Diamond, G.A., Forester, J.S.: Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. New England Journal of Medicine 300(1350) (1979)

    Google Scholar 

  3. General Electric. Ectoolbox protocol operator’s guide (2001)

    Google Scholar 

  4. Fitzpatrick, J., Sonka, M.: Handbook of Medical Imaging, Medical Image Processing and Analysis, vol. 2. SPIE, Bellingham (2000)

    Google Scholar 

  5. Gamberger, D., Lavrac, N., Krstacic, G.: Active subgroup mining: a case study in coronary heart disease risk group detection. Artif. Intell. Med. 28(1), 27–57 (2003)

    Article  PubMed  Google Scholar 

  6. Garcia, E.V., Cooke, C.D., Folks, R.D., Santana, C.A., Krawczynska, E.G., De Braal, L., Ezquerra, N.F.: Diagnostic performance of an expert system for the interpretation of myocardial perfusion spect studies. J. Nucl. Med. 42(8), 1185–1191 (2001)

    CAS  PubMed  Google Scholar 

  7. Kononenko, I.: Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine 3, 89–109 (2001)

    Article  Google Scholar 

  8. Kononenko, I., Kukar, M.: Machine Learning and Data Mining: Introduction to Principles and Algorithms. Horwood publ. (2007)

    Google Scholar 

  9. Kukar, M., Kononenko, I., Grošelj, C., Kralj, K., Fettich, J.: Analysing and improving the diagnosis of ischaemic heart disease with machine learning. Artificial Intelligence in Medicine 16(1), 25–50 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Kukar, M., Šajn, L., Grošelj, C., Grošelj, J.: Multi-resolution image parametrization in sequential diagnostics of coronary artery disease. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS, vol. 4594, pp. 119–129. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kurgan, L.A., Cios, K.J., Tadeusiewicz, R.: Knowledge discovery approach to automated cardiac spect diagnosis. Artif. Intell. Med. 23(2), 149–169 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Lindahl, D., Palmer, J., Pettersson, J., White, T., Lundin, A., Edenbrandt, L.: Scintigraphic diagnosis of coronary artery disease: myocardial bull’s-eye images contain the important information. Clinical Physiology 6(18) (1998)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Nixon, M., Aguado, A.S.: Feature Extraction and Image Processing, 2nd edn. Academic Press, Elsevier (2008)

    Google Scholar 

  15. Ohlsson, M.: WeAidU–a decision support system for myocardial perfusion images using artificial neural networks. Artificial Intelligence in Medicine 30, 49–60 (2004)

    Article  PubMed  Google Scholar 

  16. Olona-Cabases, M.: The probability of a correct diagnosis. In: Candell-Riera, J., Ortega-Alcalde, D. (eds.) Nuclear Cardiology in Everyday Practice, pp. 348–357. Kluwer Academic Publishers, Dordrecht (1994)

    Chapter  Google Scholar 

  17. Pollock, B.H.: Computer-assisted interpretation of noninvasive tests for diagnosis of coronary artery disease. Cardiovasc. Rev. Rep. 4, 367–375 (1983)

    Google Scholar 

  18. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning 53, 23–69 (2003)

    Article  Google Scholar 

  19. Slomka, P.J., Nishina, H., Berman, D.S., Akincioglu, C., Abidov, A., Friedman, J.D., Hayes, S.W., Germano, G.: Automated quantification of myocardial perfusion spect using simplified normal limits. J. Nucl. Cardiol. 12(1), 66–77 (2005)

    Article  PubMed  Google Scholar 

  20. Šajn, L., Kononenko, I.: Multiresolution image parametrization for improving texture classification. EURASIP J. Adv. Signal Process 2008(1), 1–12 (2008)

    Google Scholar 

  21. Šajn, L., Kononenko, I.: Image segmentation and parametrization for automatic diagnostics of whole-body scintigrams. In: Computational Intelligence in Medical Imaging: Techniques & Applications, pp. 347–377. CRC Press, Boca Raton (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kukar, M., Šajn, L. (2009). Improving Probabilistic Interpretation of Medical Diagnoses with Multi-resolution Image Parameterization: A Case Study. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02976-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02975-2

  • Online ISBN: 978-3-642-02976-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics