Skip to main content

Efficient Continuous Nearest Neighbor Query in Spatial Networks Using Euclidean Restriction

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5644))

Included in the following conference series:

  • 1402 Accesses

Abstract

In this paper, we propose an efficient method to answer continuous k nearest neighbor (CkNN) queries in spatial networks. Assuming a moving query object and a set of data objects that make frequent and arbitrary moves on a spatial network with dynamically changing edge weights, CkNN continuously monitors the nearest (in network distance) neighboring objects to the query. Previous CkNN methods are inefficient and, hence, fail to scale in large networks with numerous data objects because: 1) they heavily rely on Dijkstra-based blind expansion for network distance computation that incurs excessively redundant cost particularly in large networks, and 2) they blindly map all object location updates to the network disregarding whether the updates are relevant to the CkNN query result. With our method, termed ER-CkNN (short for Euclidian Restriction based CkNN), we utilize ER to address both of these shortcomings. Specifically, with ER we enable 1) guided search (rather than blind expansion) for efficient network distance calculation, and 2) localized mapping (rather than blind mapping) to avoid the intolerable cost of redundant object location mapping. We demonstrate the efficiency of ER-CkNN via extensive experimental evaluations with real world datasets consisting of a variety of large spatial networks with numerous moving objects.

This research has been funded in part by NSF grants IIS-0238560 (PECASE), IIS-0534761,IIS-0742811 and CNS-0831505 (CyberTrust), and in part from CENS and METRANS Transportation Center, under grants from USDOT and Caltrans.Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cho, H.-J., Chung, C.-W.: An efficient and scalable approach to cnn queries in a road network. In: VLDB (2005)

    Google Scholar 

  2. Hoel, E.G., Samet, H.: Efficient processing of spatial queries in line segment databases. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  3. Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main memory evaluation of monitoring queries over moving objects. In: DPDB (2004)

    Google Scholar 

  4. Kolahdouzan, M., Shahabi, C.: Voronoi-based k-nearest neighbor search for spatial network databases. In: VLDB (2004)

    Google Scholar 

  5. Kolahdouzan, M.R., Shahabi, C.: Continuous k-nearest neighbor queries in spatial network databases. In: STDBM (2004)

    Google Scholar 

  6. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Geoinformation and Mobilitat (2004)

    Google Scholar 

  7. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD (2004)

    Google Scholar 

  8. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neighbor monitoring in road networks. In: VLDB (2006)

    Google Scholar 

  9. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB (2003)

    Google Scholar 

  10. Russell, S.J., Norvig, P.: Artificial intelligence: A modern approach. Prentice-Hall, Inc., Englewood Cliffs (1995)

    MATH  Google Scholar 

  11. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD (2008)

    Google Scholar 

  12. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 79. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: SIGMOD (2002)

    Google Scholar 

  14. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB (2002)

    Google Scholar 

  15. Huang, X., Jensen, C.S., Hua, L., Saltenis, S.: S-GRID: A versatile approach to efficient query processing in spatial networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 93–111. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Huang, X., Jensen, C.S., Å altenis, S.: The island approach to nearest neighbor querying in spatial networks. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE (2005)

    Google Scholar 

  18. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: SIGMOD (2003)

    Google Scholar 

  19. Zheng, B., Lee, D.L.: Semantic caching in location-dependent query processing. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 97. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demiryurek, U., Banaei-Kashani, F., Shahabi, C. (2009). Efficient Continuous Nearest Neighbor Query in Spatial Networks Using Euclidean Restriction. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds) Advances in Spatial and Temporal Databases. SSTD 2009. Lecture Notes in Computer Science, vol 5644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02982-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02982-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02981-3

  • Online ISBN: 978-3-642-02982-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics