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Abstract. In this paper we revisit the trade-off between adaptation and retrieval 

effort traditionally held as a principle in case-based reasoning. This principle 

states that the time needed for adaptation reduces with the time spent searching 

for an adequate case to be retrieved. In particular, if very little time is spent in 

retrieval, the adaptation effort will be high. Correspondingly, if the retrieval 

effort is high, the adaption effort is low. We analyzed this principle in two 

boundary conditions: (1) when very bad and (2) when highly capable adaptation 

procedures are used. We conclude that in the first boundary condition the 

adaptation-retrieval trade-off does not necessarily exist. We also claim that the 

second does not hold for a class of planning domains frequently used in the 

literature. To validate this claim, we performed experiments on two domains of 

this type. 
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1 Introduction 

One of the crucial principles of case-based reasoning is the trade-off between the 

retrieval time, the time it takes to find a relevant case for a given problem from the 

case base, and the adaptation time, the time it takes to adapt the retrieved case. The 

trade-off has been summarized in Fig. 1, taken from [1]. There are three tenets of this 

principle: 

 

1. If little time is spent on retrieval, then, on average, the adaptation effort 

involved in using the retrieved cases to solve the given problem will be high. 

This is basically the result of stopping the retrieval process too early, which 

results in the retrieval of cases that are not easy to adapt. 

2. If too much time is spent on retrieval, then the adaptation effort to solve the 

given problem will be small. This is basically the result of spending enough 

time to ensure that a case is retrieved that is easier to adapt. However, any 

reduction in the adaptation time is counterbalanced by the time spent in 

retrieval, which may result in a high overall problem-solving time (adding up 

retrieval and adaptation times). 



3. There is an optimal intermediate point at which a case that is good enough to 

adapt is retrieved and adapting it produces the smallest overall time. 

 

The tenants of this principle have been recurrently discussed over the years. It was 

in part the motivation for retrieval strategies in case-based planning systems such as 

CAPLAN/CbC [2], derSNLP+EBL [3], and MRL [4]. It was also observed by studies 

about the occurrence of the utility problem in case-based reasoning [5]. It continues to 

be encountered in a number of domains including software design [6], travel domain 

[7], and process planning [8]. 
 

 

Fig. 1. Adaptation and retrieval trade-off (Veloso, 1994) 

Improvements in retrieval procedures (e.g., [9], [10]) can be seen as an effort to 

reduce the time to find cases “good enough” for fruitful adaptation. Analogously, 

improvements in adaptation (e.g., [11], [12], [13], [14], [15]) can be seen as indirectly 

reducing the time needed for retrieval because as adaptation is improved, less time 

need be spent on finding “good enough” cases to be adapted. Hence both kinds of 

improvements, in adaptation and retrieval, can be seen as moving the optimal point 

depicted in Fig. 1, and described in the third tenet, downward, making the overall 

problem-solving effort less costly. 

The rest of the paper proceeds as follows: In Section 2 presents our analysis of the 

two boundary conditions. Section 3 provides an illustrative plan adaptation example. 

In Section 4, we describe domain-configurable plan adaptation by first reviewing 

partial-order planning (4.1), then by explaining the domain-configurable plan 

adaptation knowledge (4.2) used by our adaptation procedure (4.3). Next, Section 5 

gives an example of domain-configurable plan adaptation. The details of our 

empirical evaluation are presented in Section 6, followed by concluding remarks. 

2 Analyses of Boundary Conditions 

An implicit assumption in the adaptation-retrieval trade-off principle is that the 

adaptation algorithm is only capable of solving problems quickly enough when the 

retrieved case is reasonably similar to the input problem. If the retrieved case is not 

sufficiently similar to the new problem then the adaptation effort will take a 
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significant amount of time. It is worth noting that despite advances in adaptation 

algorithms, there is still a search process needed in a potentially exponential search 

space. The relationship between this search space and techniques for its exploration 

can be loosely summarized as follows: A case sufficiently similar to the input 

problem is retrieved and adjusted in a sensible way. The output of this process is an 

“adjusted plan” where the retrieved plan is partially adapted but is an incomplete 

solution to the input problem. Hence, further search is required to reach a solution 

node of the new problem starting from the adjusted plan. This search can be 

performed either by first-principles search as in [11] or by retrieving and adapting 

another case as in [12] or by composing multiple planning cases as in [16] or by 

combining further retrieval/adaptation of cases and first-principles search as in [1] and 

[17]. 

To make this assumption explicit, we will study two boundary cases: when the 

adaptation algorithm is capable of solving only those problems for which it has 

already stored solutions in the case base (naïve) and when a highly capable adaptation 

procedure (omniscient) is used. 

2.1 Analysis of a Naive Adaptation Algorithm. 

Fig. 2 (left) illustrates the situation of a naïve adaptation procedure, capable of solving 

only those problems for which it already has a solution. The dotted segments 

represent discontinuities in problem-solving time, reflecting those problems for which 

a solution does not exist in the case base (CB) and therefore no data point can be 

drawn. The adaptation time for those problems for which a solution is already stored 

is zero because the solution is taken as-is. Consequently, the linear search of the 

retrieval procedure (as in Fig. 1, assume a constant time to compute similarity 

between case and problem, and a sequential search through the cases), yields an 

overall linear time for problem solving. Basically, the problem-solving time is the 

time taken for the retrieval procedure to find the solution in the case base, if one is 

already stored. This is an analogy of the CB working as a sequential database. In this 

situation there is no trade-off between adaptation and retrieval. The retrieval 

mechanism must continue looking for a solution until it finds an exact match or it has 

exhausted the whole case base. 

 

 

Fig. 2. Naïve (left) and omniscient (right) adaptation algorithms without a trade-off 



2.2. Analysis of an Omniscient Adaptation Algorithm. 

More interesting and difficult is to analyze the situation where an omniscient 

adaptation algorithm is given. First, we would like to characterize such an algorithm. 

An omniscient adaptation procedure is one where it would not need to backtrack to 

reach the adjusted plan nor backtrack during search to further refine the adjusted plan 

into a complete solution of the new problem. That is, somehow the algorithm finds 

the path in the search space to first reach the adjusted plan and then reach the solution 

plan without needing to explore alternative branches in the search space. 

Our hypothesis is that there exists a class of planning domains such that the time it 

takes an omniscient adaptation algorithm to adapt any two cases to solve a new 

problem is roughly the same, regardless of the similarity of the individual cases to the 

new problem, and given that the problems solved by the cases and the new problem 

are of the same size (i.e., they have the same number of objects in their initial states). 

Once again, combined with the linear search of the retrieval procedure, this 

hypothesis gives an overall linear time for problem solving. Basically, the problem-

solving time is proportional to the time it takes for the retrieval procedure to retrieve a 

case. We claim that in this situation there is no trade-off between adaptation and 

retrieval as illustrated in Fig. 2 (right).  

This class of planning domains is one where the graph consisting of all world states 

is a directed, strongly connected graph. In this graph, the vertexes are world states and 

the directed edges are actions (i.e., an edge from vertex x to vertex y represents the 

action transforming the state x into state y). We called these connected domains. In a 

connected domain, there always exists a directed path (sequence of actions) between 

any two vertexes (states) in the graph. The logistics transportation domain [1] is an 

example of a connected domain, provided that there is at least one truck and one 

airport in each city, as well as at least one airplane. With these provisions, a package 

in any location can always be relocated into any other location. Similarly, the blocks 

world [18] also meets this property: any configuration of blocks can always be 

reconfigured into any other configuration of these same blocks. An example of a 

domain that does not meet this property is a logistics domain variant where there are 

one-way routes between locations [3]. As a result, a package in a certain location may 

not always be reachable by a truck. 

An important question is whether it is possible to construct an omniscient 

algorithm for connected domains. This is particularly compelling, considering that 

many experiments designed to demonstrate efficiency gains of new case-based 

planning techniques use connected domains. Additionally, these domains have an 

exponential search space and, hence, the question of whether adaptation procedures 

could be built that somehow adapt the retrieved plans without exploring unnecessary 

branches in the search space is a good one. 

In this paper we will report on an omniscient adaptation algorithm, DCPOP-A (for: 

domain-configurable partial-order plan adapter). In Section 6, we report the results of 

experiments that demonstrate, for the connected domains described above, the non-

existence of a trade-off between adaptation and retrieval in our omniscient adaptation 

algorithm as depicted in Fig. 2 (right). 



 
Fig. 3. Snippet of the search space with 4 blocks 

3 A Plan Adaptation Example    

Fig. 3 illustrates a snippet of the search space for state-space planning in blocks 

world. It shows 15 states (five of them labeled p1, state 1, state 2, state 3 and final) 

out of the 73 possible states with 4 blocks. Lines connecting states represent 

transitions by the only action in the domain: Move(?x ?y ?z). This action puts a clear 

block ?x (i.e., a block with no other block on top of it) currently on top of a block ?y 

(or on the table; ?y = table) on top of another clear block ?z (or on the table). 

Transitions do not have a direction because with a change of parameters and/or 

actions they can go in either direction. Problems can be simply defined as pairs of 

states (s, s') where s is the initial state and s' is the goal state. Suppose that two cases 

are stored in the case base, Case 1 and Case 2. Case 1 solves the problem (state 1, 

final) and Case 2 solves the problem (state 2, final). Their solutions follow the path 

between these two states denoted by the bold line-connectors (the double-line parts 

represent common portion of the solutions). Suppose that a new problem (state 3, 

final) is given. Of these two cases, Case 2 is a much better choice. In fact if starting 

from state 3, there are only 3 possible transitions, two of which lead directly to the 

solution plan of Case 2 and the third one (the 4 block pile) which is a dead-end. Case 

1 might not be a good choice. For example, from state 3 a path of length 4 leading to 

the dead-end representing the 4-block pile [B, A, D, C] can be explored. There is also 

a length 2 path to p1 which would allow it to use the solution path of Case 1 but a 

first-principles search might take a significant amount of time before this path is 

found because it may first explore dead-end paths. 



4 Domain-Configurable Plan Adaptation 

Our approach for plan adaptation is motivated by existing research in domain-

configurable planning. In this form of planning, domain-specific knowledge 

enhancing the action schemas is given. This knowledge is used to guide the planning 

process, which like first-principles planning generates a plan from scratch. Domain-

configurable planners have been shown to solve problems more quickly and to scale 

much better with problem size than first-principles planners. Because of their 

scalability, their increasing number of applications, and their ability to drop classical 

planning assumptions, domain-configurable approaches are believed to be closing the 

gap between academic research in AI planning and real-world applications [19].  

We developed DCPOP-A, a domain-configurable plan adaptation algorithm, in 

order to investigate the adaptation-retrieval trade-off in a system capable of 

performing “omniscient” search with ideal inputs. This new problem-solving 

paradigm for plan adaptation uses domain-specific knowledge to guide a domain-

independent plan adaptation process. The domain-independent property allows the 

semantics of the resulting planning algorithms to be clear. Domain-specific 

knowledge allows problem-solving to scale well with problem size. This, in addition 

to previous analyses of the search space, illustrates the potential for substantial speed-

up gains in the plan adaptation process, thus providing a suitable framework in which 

to re-evaluate the adaptation-retrieval trade-off. 

We used partial-order planning (POP) as the underlying planning formalism to 

conduct our research. POP was the dominant planning paradigm some 15 years ago 

because of its ability to flexibly interleave actions, rather than totally order them, 

while solving problems. POP drops the classical requirement for actions to be totally 

ordered, which is particularly useful for plan adaptation (e.g., [11], [12]). However, 

interest in POP waned when other paradigms such as analysis of planning graphs and 

more recently planning with heuristics, demonstrated significant gains in planning 

speed and solvable problem size. More recently, there has been a revival of POP as 

heuristic methods have been developed that perform comparably to other state-of-the-

art first-principles planners. Researchers have pointed out the importance of POP 

planning for real-world domains because  in many real world situations actions can be 

performed in parallel and the planner should not commit to step orderings unless 

necessary (e.g., [20], [21], [22], [23]). 

4.1 Partial-Order Planning 

Partial-order planning begins with an input action schema and a symbolic initial and 

goal state specification of the problem. Actions have a name, zero or more 

parameters, preconditions, and effects. Next an initial plan is created, consisting of 

two special steps. The first of these steps has as effects those atoms appearing in the 

problem’s initial state; the second has as preconditions those atoms appearing in the 

goal state. Partial-order planning refines this initial plan by adding constraints and 

plan steps, ordered between the two initial steps, until a complete partial-order plan is 

obtained (complete plans are defined below). A partial-order plan is defined as a 4-

tuple (S, , CL, B) of sets of POP plan elements. S is the set of plan steps, which 



represent the application of actions in the plan. The set  contains the ordering 

constraints between plan steps, which take the form s  s', indicating that step s must 

be executed before step s'. The set CL contains causal links, s p s', indicating that 

the precondition p needed by the action in step s' is produced as an effect of the action 

in step s. Step s might be an existing step in the plan or a new one added to satisfy p. 

The set B indicates variable binding constrains, ?x ≠ ?y or ?x = ?y, indicating that 

whenever variable ?x occurs in the plan it must take a different (respectively the 

same) value as the variable ?y (?x represents that x is a variable symbol). Set B is 

empty when planning without variables (i.e. “grounded”). A partial-order plan is 

complete if it has no flaws. There are two kinds of flaws in POP: open preconditions 

and causal threats. An open precondition occurs when a step s' in the plan has a 

precondition p, written p@ s', for which no causal link s p s' exists. A threat occurs 

when a causal link s p s' and a step s'' exist such that s'' has as effect the negation of 

p (i.e., ¬p), written s'' ¬p, and s'' can occur between s and s', written s'' || (s p s'), 

in a linearization of the plan. A linearization of a plan is a sequencing of all steps in a 

manner consistent with the ordering constraints such that, for every two steps s and s', 

s will always be listed before s' if either s p s' or s  s' hold. The objective of the 

POP planning process is to refine the initial plan into a complete partially-ordered 

plan. Any linearization of this complete partially-ordered plan is a solution to the 

planning problem. There are four possible POP plan refinements: adding ordering 

constraints, adding steps, adding causal links, and adding binding constraints.  

Ordering constraints and binding constraints are added to solve causal threats. Steps 

and causal links are added to satisfy open preconditions.  

Fig. 4 shows an example of a partial-order plan in the Blocks World domain. The 

arrows represent causal links and ordering constraints. The meaning of the “x” beside 

some of the plan steps will be explained in a later discussion and may be ignored for 

now. If nothing is underneath a block, this means that the block is on the table (not 

shown), For example, in the initial state block C is on the table and in the goals block 

B is on the table. This plan unstacks all blocks on the table and then stacks them to 

form the configuration indicated by the goals. 

4.2 Domain-Configurable Partial-Order Plan Adaptation Knowledge 

Domain-configurable partial-order knowledge in DCPOP-A is encoded as rules of the 

following form: 
 

if (+/–) <POP plan element> [,(+/–) <POP plan element>]  

then (do:/undo:) <POP plan refinement> [, (do:/undo:) <POP plan refinement>] 
 

The conditional part of the rule is a conjunction of one or more POP plan elements 

as defined in the previous section.  These POP plan elements are preceded by either a 
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Fig. 4. Example of a partial-order plan 



plus or a minus.  The consequent part is a sequence of POP plan elements, preceded 

by do or undo symbols. The semantics of a rule are as follows. The rule is satisfied if 

each of the POP plan elements preceded by a plus sign occurs in the current plan and 

none of the POP plan elements preceded by the minus sign occur in the current plan. 

The consequent part indicates each of the POP plan refinements to add, if it is 

preceded by a do, or to delete, if it is preceded by an undo.  When a plan step s is 

deleted (i.e., by an undo), any ordering constraint or causal link connecting to/from s 

is also removed. When an ordering constraint, a causal link, or a binding constraint is 

deleted, no other plan element is removed. The POP domain-configurable rules, 

which henceforth we refer to as POP rules, are a natural extension of POP refinements 

and in fact all POP refinements can be expressed using these rules. We also allow as 

conditions same(?x,?y) and different(?x,?y) indicating that two variables take the 

same (or different) value. We write instead ?x = ?y (or ?x ≠ ?y) for readability.  

We use two classes of POP rules: retraction rules and refinement rules. Retraction 

rules indicate POP plan elements that must be removed from the plan. As a result, 

they always have the undo: label in the consequent part of the rule. Refinement rules 

indicate POP plan elements that must be added to the plan. As a result, they always 

have the do: label in the consequent part of the rule. This distinction facilitates the 

systematic search performed by the adaptation algorithm that will be discussed in the 

next section. 

 
Table 1: POP rules partially encoding the unstack-stack strategy 

(1)  

if   s0  (on ?x ?y)  

      s0  (block ?y) 

     – s  (on ?x  table)   

then do: s': (move ?x ?y table) 

         do: s0  (on ?x ?y) s' 

(2) 

if   s: (move ?x ?y table) 

    + s': (move ?z table ?w ) 

    – s  s' 

then  do: s  s' 

(3) 

if   s: (move ?x ?y table) 

     s0  (block ?y) 

     s0  (on ?x ?y)    

    – s0  (on ?x ?y) s 

then  do: s0  (on ?x ?y) s 

(4) 

if   s: (move ?x table ?y)  

     –  ( (on ?x ?y) @ s∞ ) 

then undo: s:(move ?x table ?y) 

 

Table 1 shows an example of POP rules in the Blocks World domain. These POP 

rules encode the strategy, which we call unstack-stack, that first unstacks all blocks to 

the table and then stacks them in the required configuration. This is the strategy 

followed to generate the plan in Fig. 4. The first POP rule unstacks block ?x to the 

table. The first two conditions check if block ?x is on top of another block ?y in the 

initial state. The third condition checks that no existing step unstacks ?x to the table. 

This rule makes two refinements: it adds a step s' unstacking ?x to the table and adds 

a causal link connecting the step s0 to achieve a precondition of s'. The second POP 

rule ensures that unstacking steps (e.g., step s) are done before stacking steps (e.g., 

step s'). The third POP rule is intended as a refinement of an input plan so that it 

commits to the encoded strategy. It checks if a block (?x) that is unstacked by an step 

s is linked to the condition (on ?x ?y) in the initial state. If it is not, it adds a causal 

link connecting the condition and s. This rule can be triggered in situations where in 



Procedure DCPOP-A(S, G, A, πold, R) 

//input: initial state S, goals G, actions A, plan πold, 

POP rules R 

//output: complete plan for (S,G) or fail 

  

1. πadj  adjust-plan(S, G, πold) 

2. P  doAllDCRetractions(πadj, R) 

3. while (P  ≠ Ø) do 

4.       π  heuristicSelectPlan(P, A) 

5.       P  P – {π} 

6.       if flaws(π) = Ø then 

7.            return π 

8.       else 

9.    P'  doOneStepDCRefinements(π, R)  

10.            if (P' = ) then 

11.                  f  heuristicSelectFlaw(π ) 

12.                  P  P  refinements(π, f, A ) 

13.            else  

14                   P  P     P'      

15.  return fail 
 

Fig. 5: Pseudo-code of DCPOP-A 

the initial state of the retrieved plan, block ?x was on top of a block ?y and later in 

that plan ?x was unstacked to the table by an step s. This plan would not have been 

generated by the strategy encoded in Table 1. The fourth POP rule is a retraction rule. 

It removes any stacking step from the table that does not achieve a goal. 

Any step removed by the fourth rule does not need to be added back because in the 

stack-unstack strategy, blocks are stacked only to achieve goals. After all these steps 

are removed, the four POP refinement rules of Table 1 will produce incomplete plans 

that can be further refined without backtracking on any of the refinements made by 

applying these rules. This is a highly desirable property as in some domains it might 

be difficult to obtain a collection of POP rules that produce a complete plan. 

Consequently, rules can be given for the more computationally complicated details 

(e.g., how to achieve the goals), leaving the rest to standard POP. Ideally, the 

intermediate plan produced from adaptation will be easier to complete than the initial 

plan. The unstack-stack 

strategy, partially 

encoded in Table 1, can 

be fully encoded to 

ensure that the resulting 

plans are complete. 

Furthermore, no 

backtracking will be 

needed during the plan 

adaptation process. 

Hence, when used in 

DCPOP-A, these rules 

will result in an 

omniscient plan 

adaptation algorithm. 

This will be confirmed 

in the experimental 

evaluation where no 

backtracking occurred in 

any of the plan 

adaptation instances. We 

omit presenting all the 

POP rules due to the 

lack of space.  

4.3 Domain-Configurable Partial-Order Plan Adaptation Algorithm 

Fig. 5 presents the pseudocode of the proposed plan adaptation algorithm on top of 

POP. It receives as input the initial state, goal state, and actions. It also receives the 

plan to be adapted, πold, and the POP rules R (as described in Section 4.2). The output 

is a complete plan solving (S,G,A) or fail if none is found. DCPOP-A begins by 

adjusting πold relative to (S,G) (Line 1). Adjust plan works by  repeatedly (1) 

removing a step s that mentions objects in the retrieved plan that are not mapped into 



 
Fig. 6. Adapted partial-order plan 
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objects in the new problem, and (2) removing any ordering constraint or causal link 

connecting to/from s. This is a common step for adaptation in first-principles POP 

planning (e.g., [24], [13], [25]). Then, a set of plans is found by repeatedly applying 

retraction rules in R until none is applicable (Line 2). These plans are added to P, the 

list of current candidate plans to be refined. The next part of the pseudocode continues 

iterating while there is at least one candidate plan to be refined and no solution has 

been found (lines 3-14). When the list of candidate plans is empty, a failure is 

returned (Line 15). At each iteration, a candidate plan π is selected using the 

heuristics and is removed from P (lines 4 and 5). If this candidate plan has no flaws, it 

is returned (lines 6 and 7). Otherwise each plan computed by applying an applicable 

POP rule to π is added to P (lines 9 and 14).  If no domain configurable refinements 

are found, standard POP refinements are added to P (lines 11 and 12). In principle, 

DCPOP-A could use any relevant plan and flaw selection heuristics described in [26] 

for lines 4 and 11; however our implementation uses last-in-first-out selection for 

both plans and flaws. 

5 Example of Domain-Configurable Plan Adaptation 

Fig. 6 shows an example of a plan obtained by adapting the plan from Fig. 4 using the 

unstack-stack strategy partly encoded in Table 1. The new problem has almost the 

same initial state as before with the exception that block F does not exist, and there 

are several differences in the goals. Underlined steps indicate steps retained from the 

retrieved plan. Continuous lines indicate causal links and ordering constraints retained 

from the retrieved plan (only a subset is shown).  Dashed lines indicate new causal 

links and ordering constraints added (only a subset is shown). The steps marked “x” 

in Fig. 4 are steps that have been removed; The steps move(E,F,table) and 

move(F,table,E) were removed by adjust-plan because F does not occur in the new 

problem. The step move(C,table,A) was removed by the fifth POP rule because it is 

inconsistent with the goal. The step move(B,table,C) was added by the third POP rule 

because it achieves a goal. In this specific example the maximum possible number of 

steps is retained from the retrieved plan. In general, this is not the case because steps 

that could have been retained to form a complete plan will be removed if they are 

inconsistent with the unstack-stack strategy. 

Recall from the example in Fig. 3 that Case 1 solves (state 1, final) and Case 2 

solves (state 2, final). A caveat must be made that the search space in Fig. 3 

represents states of the world whereas DCPOP-A’s search space is a space of plans. 

However a mapping can be made from the state space to the plan space such that any 

transition made between states represents the corresponding action being added to the 

plan in the transition between plans. Continuing with the example, if we apply the 



unstack-stack strategy to the new problem (state 3, final), then for both cases it will 

take the path for node p1 (meaning it will unstack all blocks). If Case 1 is being 

adapted then it will follow the plan laid out from p1 all the way to the goal state. If 

Case 2 is being adapted then it will add the step stacking C on D from p1 and then 

continue the rest of the plan from Case 2, which stacks the remaining blocks B and A 

in that order. So it takes 2 refinements if Case 1 is reused and 3 refinements if Case 3 

(solves problem (state 3, final)) is reused and no exploration of failed nodes is made.  

6 Empirical Evaluation  

We performed experiments by encoding POP rules for the logistics transportation 

domain and blocks world. In the logistics transportation domain, packages must be 

relocated into target locations. There are two transportation means: trucks, which can 

be used to relocate packages within locations in the same city and airplanes, which 

can be used to relocate packages that are in different cities. The blocks world is a 

puzzle-like domain in which piles of blocks on a table must be reconfigured into a 

target configuration. The basic restriction is that blocks can only be moved either 

from the top of a pile to the top of another pile or to the table. We encoded the 

unstack-stack strategy described in Section 4.2 for the blocks world; therefore we 

attained an omniscient plan adaptation algorithm.  

6.1 Transportation Domain Encoding 

For the logistics transportation domain we encoded the following basic strategy: 

1. We remove steps from the retrieved plan that load and unload any packages 

not at the destination city. So for example if a package p5 needs to be relocated 

to loc2 in city3, then any load and unload steps of that package in any city other 

than city3 will be removed. This eliminates potential threats that would cause 

backtracking. 

2. We take advantage of any steps in the plan relocating a package into the 

destination location in the destination city by keeping those steps and adding 

connecting steps as needed. So, for example, if the retrieved plan relocates p5 

from a location loc6 in city3 to loc2 but in the new problem the package begins 

at airport4 in city3, then steps are added that relocate p5 into loc6 from airport4. 

3. We added steps to the plan that relocate packages to the destination city if 

needed, taking advantage of any existing steps driving a truck or flying an 

airplane whenever possible. So for example, if p5 was initially in loc7 in city2, 

then it will be relocated to an airport in city2. If an existing step in the plan 

already moves p5 from loc7 to an airport in city2, this step will be reused. 

Otherwise a new step will be created. Steps are also added relocating p5 from 

airport1 to airport4. If an existing step in the plan flies p5 from airport1 to 

airport4 it will be reused. Otherwise a new step is created.  

These encodings ensure that DCPOP-A will be omniscient when solving problems 

in the logistics transportation domain. 



6.2 Experimental Setup 

For each domain we constructed a case base of 100 cases and a testing set of 10 

problems. All problems have the same goals but their initial state is randomly 

generated. For the blocks world the goal is to achieve a 5-block pile and for logistics a 

particular configuration of 4 packages required to be at 4 different locations. The 

initial state for the blocks world is a configuration of the 5 blocks. So the total number 

of problems that can be generated is 501. The initial state for the transportation 

domain is a configuration of 3 cities, each having 3 locations (including 1 airport), 

each city has 1 truck and there are 2 airplanes. So the total number of problems that 

can be generated, given that the packages can start in any of the 9 locations and that 

the start locations of the trucks and airplanes are fixed, is 6561. For each problem p in 

the testing set we adapt each of the cases c stored in the case base. We run each 

problem-case pair (p,c) 30 times and average the results. So the total runs for each 

domain was 10 * 100 * 30 = 30,000 runs.    

Fixing the goals is a simplifying way to simulate how our retrieval algorithms 

would work with an omniscient adaptation algorithm.  Namely, we will simply 

retrieve any case that achieves the same goals regardless of the similarity. In 

experiments reported in [27], it is shown that modifying features in the initial state 

can result in a significant change in the adaptation process on top of a partial order 

planner. For historical context, in Prodigy/Analogy [1] retrieval occurs by iterating 

two steps. At the first step the system uses a hash table to identify if there are cases 

stored achieving the same number goals and then, in the second step, computes 

similarity based on the initial state. If a sufficiently similar case is found (e.g., the 

similarity of the initial states is greater than a pre-defined threshold) then the case is 

retrieved. Otherwise it repeats the two steps by removing one goal. With an 

omniscient adaptation algorithm the second step would be unnecessary. A similar 

process to Prodigy/Analogy is performed in CAPlan/CbC and derSNLP.  

6.3 Results 

Fig. 7 shows the run-time results for the blocks world (left) and the logistics 

transportation domain (right) respectively. The x axis corresponds to the 100 cases * 

10 problems and the y axis correspond to the average time in seconds over the 30 runs 

for each (case, problem) adaptation process. The x-axis is sorted so the first 100 

averaged data points are shown with the first given problem, then again the next 100 

points with the second given problem, and so forth. Thus, the vertical bars in the 

graphs separate data for each of the 10 problems; between those bars (i.e., for a given 

problem), the data points show the averaged times to adapt each of the cases in the 

CB into a solution for the problem. In the blocks world domain, we observe that the 

running times for adapting each case to a given problem is clustered around the same 

time intervals. For example, for the 4th problem the average time to adapt all cases is 

0.155 seconds with a standard deviation of 0.012 seconds. We observed similar 

results across all other problems. In the logistics domain, there is no significant time 

difference between solving times across all given problems; the average problem 

solving time, across all pairs (case, problem), is 9 seconds with a standard deviation 



of 0.5 seconds. The results for both domains support our hypothesis that regardless of 

which any two cases are retrieved for a given problem, their adaptation times will be 

roughly the same, regardless of the individual cases similarity to the new problem, 

and given that the problems solved by the cases and the new problem are of the same 

size.  

 

 
 

Fig. 7. Adaptation times for blocks world (left) and logistics (right) 

7 Conclusions 

In this paper we revisited the adaptation and retrieval trade-off traditionally held as a 

principle in case-based reasoning research and even practice. We argue that this 

principle involves an implicit assumption that the adaptation algorithm is capable of 

solving problems fast enough only when the retrieved case is reasonably similar to the 

input problem. If the retrieved case is not sufficiently similar to the new problem then 

the adaptation effort will take a significant amount of time. To make this assumption 

explicit, we analyzed this principle under two boundary conditions: (1) for naïve and 

(2) for omniscient adaptation algorithms. Using a simple complexity analysis, we 

conclude the adaptation-retrieval trade-off does not necessarily exist for the naïve 

adaptation procedures. We also claim that the adaptation-retrieval trade-off does not 

necessarily hold for connected domains, and validated this hypothesis empirically on 

two classical connected domains used widely in the case-based planning literature.  

A provocative implication of our results is that, because for omniscient plan 

adaptation there is no adaptation-retrieval trade-off, we can substantially reduce the 

case base by simply having one case for each combination of goals indexed by a hash 

table so that the retrieval procedure would run in constant time by simply identifying 

the case that achieves the same goals (or even use an empty CB and plan from 

scratch).  However, running time is but one criterion by which we can measure the 

effectiveness of the overall case-based reasoning process. Other, arguably at least as 

important criteria, such as quality of the resulting plan, should be considered. Indeed, 

one of the motivational scenarios for case-based reasoning is a case base storing a 

collection of hand-crafted solutions. In this scenario, the retrieval task is to find a very 

similar case, if not the most similar one, and the adaptation task is to commit to the 

retrieved plan as much as possible. Throwing away half of the solution, as encoded in 

the unstack-stack strategy, would not make any sense in this scenario regardless of 
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how fast the adapted solution is generated. Instead we envision highly tuned POP 

rules that are sensible towards retaining crucial steps identified by the user and 

retrieval procedures that ensure that plans meeting certain constraints are produced, as 

recent research on retrieval has suggested (e.g., [28], [29]). 

For future work we are planning to investigate the adaptation-retrieval trade-off for 

non connected domains such as the logistics transportation domain with one-way 

routes. Unlike connected domains, there is no guarantee that the adjusted plan can 

always be extended to reach a solution. Hence, the question is whether POP rules can 

be written that rapidly remove parts of the adjusted plan in such a way that (1) a 

significant portion of the retrieved plan is reused in the adjusted plan and (2) this 

adjusted plan can rapidly be refined to obtain a solution. 
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