Skip to main content

Adaptation versus Retrieval Trade-Off Revisited: An Analysis of Boundary Conditions

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5650))

Included in the following conference series:

Abstract

In this paper we revisit the trade-off between adaptation and retrieval effort traditionally held as a principle in case-based reasoning. This principle states that the time needed for adaptation reduces with the time spent searching for an adequate case to be retrieved. In particular, if very little time is spent in retrieval, the adaptation effort will be high. Correspondingly, if the retrieval effort is high, the adaption effort is low. We analyzed this principle in two boundary conditions: (1) when very bad and (2) when highly capable adaptation procedures are used. We conclude that in the first boundary condition the adaptation-retrieval trade-off does not necessarily exist. We also claim that the second does not hold for a class of planning domains frequently used in the literature. To validate this claim, we performed experiments on two domains of this type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Veloso, M.M.: Planning and Learning by Analogical Reasoning. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  2. Muñoz-Avila, H., Weberskirch, F.: Planning for Manufacturing Workpiececs by Storing, Indexing and Replaying Planning Decisions. In: AIPS 1996, pp. 150–157. AAAI Press, Menlo Park (1996)

    Google Scholar 

  3. Ihrig, L., Kambhampati, S.: Storing and Indexing Plan Derivations through Explanation-Based Analysis of Retrieval Failures. JAIR 7, 161–198 (1997)

    Google Scholar 

  4. Koehler, J.: Avoiding Pitfalls in Case-based Planning. In: AIPS 1994, pp. 104–109 (1994)

    Google Scholar 

  5. Francis, A., Ram, S.: A Comparative Utility Analysis of Case-based Reasoning and Control-rule Learning Systems. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912. Springer, Heidelberg (1995)

    Google Scholar 

  6. Gomes, P., Pereira, F.C., Seco, N., Pavia, P., Carreiro, P., Ferreira, J., Bento, C.: Combining Case-Based Reasoning and Analogical Reasoning in Software Design. In: Proceedings of the 13th Irish International Conference on Artificial Intelligence and Cognitive Science (2002)

    Google Scholar 

  7. Smyth, B., McKenna, E.: Footprint-Based Retrieval. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, p. 343. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Chang, H., Dong, L., Liu, F., Lu, W.: Indexing and Retrieval in Machining Process Planning Using Case-Based Reasoning. Artificial Intelligence in Engineering 14 (2000)

    Google Scholar 

  9. Bonzano, A., Cunningham, P., Smyth, B.: Using Introspective Learning to Improve Retrieval in CBR: A Case Study in Air Traffic Control. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 291–302. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Stahl, A., Gabel, T.: Using Evolution Programs to Learn Local Similarity Measures. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Ihrig, L., Kambhampati, S.: Design and Implementation of a Replay Framework Based on a Partial Order Planner. In: AAAI/IAAI 1996, pp. 849–854. AAAI Press, Menlo Park (1996)

    Google Scholar 

  12. Muñoz-Avila, H., Weberskirch, F.: A Case Study on the Mergeability of Cases with a Partial-Order Planner. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 325–337. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. van der Krogt, R., de Weerdt, M.: Plan Repair as an Extension of Planning. In: ICAPS 2005, pp. 161–170. AAAI Press, Menlo Park (2005)

    Google Scholar 

  14. Gerevini, A., Serina, I.: Fast Plan Adaptation through Planning Graphs: Local and Systematic Search Techniques. In: Proc. of AIPS 2000, pp. 112–121. AAAI Press, Menlo Park (2000)

    Google Scholar 

  15. Warfield, I., Hogg, C., Lee-Urban, S., Muñoz-Avila, H.: Adaptation of Hierarchical Task Network Plans. In: FLAIRS 2007, pp. 429–434 (2007)

    Google Scholar 

  16. Goel, A., Ali, K., Donnellan, M., Gomez, A., Callantine, T.: Multistrategy Adaptive Navigational Path Planning. IEEE Expert 9(6), 57–65 (1994)

    Article  Google Scholar 

  17. Tonidandel, F., Rillo, M.: Case Adaptation by Segment Replanning for Case-Based Planning Systems. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 579–594. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Fikes, R., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence 2, 189–208 (1971)

    Article  MATH  Google Scholar 

  19. Nau, D., Au, T., Ilghami, O., Kuter, U., Muñoz-Avila, H., Murdock, J., Wu, D., Yaman, F.: Applications of SHOP and SHOP2. IEEE Intelligent Systems 20(2), 34–41 (2005)

    Article  Google Scholar 

  20. Knoblock, C.: Generating Parallel Execution Plans with a Partial-Order Planner. In: AIPS 1994, pp. 98–103. AAAI Press, Menlo Park (1994)

    Google Scholar 

  21. Paulokat, J., Wess, S.: Planning for Machining Workpieces with a Partial-Order, Nonlinear Planner. In: Proceedings of the AAAI 1994 Fall Symposium on Planning and Learning, AAAI Press, Menlo Park (1994)

    Google Scholar 

  22. Nguyen, X., Kambhampati, S.: Reviving Partial Order Planning. In: IJCAI 2001, pp. 459–466. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  23. Vidal, V., Geffner, H.: Branching and Pruning: An Optimal Temporal POCL Planner Based on Constraint Programming. Artificial Intelligence 170(3), 298–335 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hanks, S., Weld, D.S.: A Domain-Independent Algorithm for Plan Adaptation. JAIR 2, 319–360 (1995)

    Google Scholar 

  25. Kuchibatla, V., Muñoz-Avila, H.: An Analysis on Transformational Analogy: General Framework and Complexity. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp. 458–473. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Younes, H., Simmons, R.: VHPOP: Versatile Heuristic Partial Order Planner. Journal of Artificial Intelligence Research 20, 405–430 (2003)

    MATH  Google Scholar 

  27. Muñoz-Avila, H., Hüllen, J.: Feature Weighting by Explaining Case-Based Planning Episodes. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 280–294. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  28. McSherry, D.: Completeness Criteria for Retrieval in Recommender Systems. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp. 9–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Nicholson, R., Bridge, D., Wilson, N.: Decision Diagrams: Fast and Flexible Support for Case Retrieval and Recommendation. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp. 136–150. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee-Urban, S., Muñoz-Avila, H. (2009). Adaptation versus Retrieval Trade-Off Revisited: An Analysis of Boundary Conditions. In: McGinty, L., Wilson, D.C. (eds) Case-Based Reasoning Research and Development. ICCBR 2009. Lecture Notes in Computer Science(), vol 5650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02998-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02998-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02997-4

  • Online ISBN: 978-3-642-02998-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics