Featherweight Jigsaw
A minimal core calculus
for modular composition of classes*

Giovanni Lagorio, Marco Servetto, and Elena Zucca

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
email: {lagorio,servetto,zuccal}@disi.unige.it

Abstract. We present FJiG, a simple calculus where basic building
blocks are classes in the style of Featherweight Java, declaring fields,
methods and one constructor. However, inheritance has been general-
ized to the much more flexible notion originally proposed in Bracha’s
Jigsaw framework. That is, classes play also the role of modules, that
can be composed by a rich set of operators, all of which can be expressed
by a minimal core.

We keep the nominal approach of Java-like languages, that is, types are
class names. However, a class is not necessarily a structural subtype of
any class used in its defining expression.

The calculus allows the encoding of a large variety of different mecha-
nisms for software composition in class-based languages, including stan-
dard inheritance, mixin classes, traits and hiding. Hence, FJ1G can be
used as a unifying framework for analyzing existing mechanisms and
proposing new extensions.

We provide two different semantics of an FJ1G program: flattening and
direct semantics. The difference is analogous to that between two intu-
itive models to understand inheritance: the former where inherited meth-
ods are copied into heir classes, and the latter where member lookup is
performed by ascending the inheritance chain. Here we address equiva-
lence of these two views for a more sophisticated composition mechanism.

Introduction

Jigsaw is a framework for modular composition largely independent of the un-
derlying language, designed by Gilad Bracha in his seminal thesis [7], and then
formalized by a minimal set of operators in module calculi such as [19,2]. In
this paper, we define an instantiation of Jigsaw, called Featherweight Jigsaw
(FJia for short), where basic building blocks are classes in the style of Java-like
languages. That is, classes are collections of fields, methods and constructors,
that can be instantiated to create objects; also, class names are used as types
(nominal typing).

* This work has been partially supported by MIUR EOS DUE - Extensible Object
Systems for Dynamic and Unpredictable Environments.

The motivation for this work is that, even though Jigsaw has been proposed a
long time ago and since then it has been greatly influential', its design has been
never fully exploited in the context of Java-like languages, as recently pointed
out as an open question in [3]. Here, we provide a foundational answer to this
question, by defining a core language which, however, embodies the key fea-
tures of Java-like languages, in the same spirit of Featherweight Java [14] (FJ
for short). Indeed, formally, a basic class of FJiG looks very much as a class in
FJ. However, standard inheritance has been replaced by the much more flex-
ible (module) composition, that is, by the rich set of operators of the Jigsaw
framework.

Instantiating Jigsaw on Java-like languages poses some non trivial design prob-
lems. Just to mention one (others are discussed in Section 1), we keep the nominal
approach of Java-like languages, that is, types are class names, however, a class
is not necessarily a structural subtype of any class used in its defining expression.
While this allows a more flexible reuse, it may prevent the (generalized) inher-
itance relation to be a subtyping relation. So, the required subtyping relations
among classes are declared by the programmer and checked by the type system.
Another challenging issue is the generalization to FJ1G of two intuitive models
to understand inheritance: one where inherited methods are copied into heir
classes, and the other one where member lookup is performed by ascending the
inheritance chain. We address the equivalence of these two views for a much
more sophisticated composition mechanism. Formally, we provide two different
semantics for an FJI1G program: flattening semantics, that is, by translation
into a program where all composition operators have been performed, and direct
semantics, that is, by formalizing a dynamic look-up procedure.

The paper is organized as follows. Section 1 provides an informal introduction
to FJIG by using a sugared surface syntax. Section 2 introduces a lower level
syntax and defines flattening semantics. Section 3 defines the type system and
states its soundness. Section 4 defines direct semantics of FJiG and states the
equivalence between the two semantics. In the Conclusion, we summarize the
contribution of the paper and briefly discuss related and further work.

A preliminary version of this paper, focused on the equivalence between flatten-
ing and direct semantics, and not including the type system, is [15].

1 An informal introduction

In this section we illustrate the main features of FJ1G by using a sugared surface
syntax, given in Figure 1. We assume infinite sets of class names C, (member)
names N, and variables . We use the bar notation for sequences, e.g., it is a
metavariable for sequences py . .. fiy.

! Just to mention two different research areas, Jigsaw principles are present in work
on extending the ML module system with mutually recursive modules [8,12,13],
and Jigsaw operators already included those later used in mixin classes and traits
[10,1,18,9,17].

P = cd leq program

c¢d = cmod class C CE class declaration
leg ==0C<=/CC subtype declaration
cmod :: = abstract | € class modifier
CE == class expression
B basic class
| C class name
| merge CE1, CE> merge
| CE, override CE; override
| rename N to N’ in CE rename
| restrict N in CE restrict
| hide N in CF hide
| CE[7] ThisType wrapper
| CE|kh{super(€)}] constructor wrapper
N «=F|M member name
kh :: = constructor(C) constructor header
B s={r Pk n} basic class
T :t = ThisType <= C ThisType constraint
@ = mod C F; field
K = kh{F=e} constructor
W ::=mod C M (C z){return e;}
| abstract C M(C z); method
mod :: = abstract | virtual | frozen | local member modifier
e n= expression
z variable
| e.F client field access
| e.M(e) client method invocation
| F internal field access
| M(e) internal method nvocation
| new C(e) object creation

Fig. 1. FJia (surface) syntax

This syntax is designed to keep a Java-like flavour as much as possible. In the
next section we will use a lower-level representation, which allows to formalize
the semantics in a simpler and natural way.

We will first revise Jigsaw features in the context of FJiG, then discuss some
issues that are specific to the instantiation on Java-like languages.

Basic classes Jigsaw is a programming paradigm based on (module) composi-
tion, where a basic module (in our case, a class) is a collection of components (in
our case, members), which can be of four different kinds, indicated by a modifier:
abstract, virtual, frozen, and local. A method has no body if and only if
its modifier is abstract. The meaning of modifiers is as follows:

— An abstract member has no definition, and is expected to be defined later
when composing the class with others.

— A virtual or frozen member has a definition, which can be changed by us-
ing the composition operators. However, the redefinition of a frozen member
does not affect the other members, which still refer to its original definition.

— Finally, as the name suggests, a local member cannot be selected by a client,
and is not affected by composition operators, hence its definition cannot be
changed.

We assume by default (hence omit) the modifier frozen for fields and virtual
for methods. A class having at least one abstract member must be declared
abstract.

The following example shows two basic classes.?

abstract class A {
abstract int M1();
int M2() { return M1() + M3(Q); }
local int M3() { return 1; }
}
abstract class B {
abstract int M2();
frozen int M1() { return 1 + M2(); }
}

These two classes are abstract (hence cannot be instantiated).

Merge and override operators A concrete class can be obtained by applying the
merge operator as follows:

class C merge A, B
This declaration is equivalent to the following:

class C {
frozen int M1() { return 1 + M2(); 1}
int M2() { return M1() + M3(); }
local int M3() { return 1; }

}

Conflicting definitions for the same (non-local) member are not permitted, whereas
abstract members with the same name are shared. Members can be selected by
client code unless they are local, that is, we can write, e.g., new C() .M2() but
not new C().M3(). To show the difference between virtual and frozen mem-
bers, in the next examples we use the override operator, a variant of merge
where conflicts are allowed and the left argument has the precedence.

class D1
{ int M2() { return 2; } } override C

An invocation new D1 () .M2() will evaluate to 2, and an invocation new D1() .M1()
to 3. On the other hand, in this case:

2 To write more readable examples, we assume that the primitive type int and its
operations are available.

class D2
{ int M1() { return 3; } } override C

an invocation new D2() .M1() will evaluate to 3, but an invocation new D2() .M2()
will not terminate, since the internal invocation M1() in the body of M2() still
refers to the old definition.

Client and internal member selection In a programming paradigm based on
module composition, a module component can be either selected by a client, or
used by other components inside the module itself. Correspondingly, in FJiG we
distinguish between client field accesses and method invocations, which specify
a receiver, and internal field accesses and method invocations, whose implicit
receiver is the current object. Note that e.M(...) behaves differently from M. ..)
even in the case e denotes an object of the same class (that is, internal selection
does not correspond to selection of private members as in, e.g., Java). For
instance, consider the following class, where we use the operator rename, which
changes the name of a member.

class E merge
(rename M1 to M4 in {
int M1() { return 1; }
int M2() { return M1(); }
int M3() { return new E().M1(); }
}), { int M1() { return 3; } }

An invocation new E().M2() returns 1, since the internal invocation in the body
of M2 refers to the method now called M4. However, an invocation new E() .M3()
returns 3, since the client invocation in the body of M3 refers to method M1 in
E. Note that this does not even coincide with privateness on a “per object” basis
as, e.g., in Smalltalk, since this would be the case even with a client invocation
e.M1(), where e denotes, as special case, the current object.

Other operators of the Jigsaw framework, besides the ones mentioned above, are
restrict, which eliminates the definition for a member®, and hide, which makes a
member no longer accessible from the outside. We refer to [7] and [2] for more
details. All these operators and many others can be easily encoded (see [2]) by
using a minimal set of primitive operators: sum, reduct, and freeze, which will
be formally defined in next section.

We discuss now the issues specific to the instantiation on Java-like classes.

Fields and constructors It turns out that the above modifiers can be smoothly
applied to fields as well, with analogous meaning, as shown by the following
example which also illustrates how constructors work.

class A1 {
abstract int F1;
virtual int F2;
int F3;

3 Indeed, override can be obtained by combining merge and restrict.

constructor(int x) { F2 = x; F3 = x; }
int M() { return F2 + F3; }
}
class C1 {
int F1;
int F2;
int F3;
constructor (int x) {
F1 = x + 1;
F2 = x + 1;
F3 x + 1; }
} override A1l

A basic class defines one* constructor which specifies a sequence of parame-
ters and a sequence of initialization expressions, one for each non-abstract field.
We assume a default constructor with no parameters for classes having no fields.
Note the difference with FJ, where the class constructor has a canonical form (pa-
rameters exactly correspond to fields). This would be inadequate in our frame-
work since object layout must be hidden to clients. In order to be composed by
merge/overriding, two classes should provide a constructor with the same param-
eter list (if it is not the case, a constructor wrapper can be inserted, see the last
example of this section), and the effect is that the resulting class provides a con-
structor with the same parameter list, that executes both the original construc-
tors. An instance of class C1 has five fields, and an invocation new C1(5).M()
will return 11, since F2 in the body of M refers to the field declared in C1 (ini-
tialized with 5+1), while F3 refers to the field declared in A1 (initialized with 5).
Classes composed by merge/overriding can share the same field, provided it is
abstract in all except (at most) one. Note that this corresponds to sharing fields
as in, e.g., [4]; however, in our framework we do not need an ad-hoc notion.

Inheritance and subtyping Since our aim is to instantiate the Jigsaw framework
on a Java-like language, we keep a nominal approach, that is, types are class
names. However, subtyping does not coincide with the generalized inheritance
relation, since some of the composition operators (e.g., renaming) do not preserve
structural subtyping. Hence, we assume that a program includes a sequence of
subtyping relations among classes explicitly declared by the programmer, and
the type system checks, for each C' <= C’ subtype declaration, that the relation
can be safely assumed since C' is a structural subtype of C’.

Type of the current object The following code

{
C M() { return this; %}

4 Since overloading is not allowed.

5 Alternatively, the compiler could (easily, since class types must be computed in any
case) check which declared classes are structural subtype of each other and provide
this information to the programmer. The former solution gives more control to the
programmer at the price of more work.

}

can be safely inherited only by classes which are a subtype of C. To ensure this,
basic classes can declare a ThisType constraint:

{ ThisType <= C;
C M() { return this; }
}

This constraint is used to typecheck the occurrences of this inside method
bodies. Moreover, the constraint is checked when inheriting the code:

class C {
ThisType <= C;
C M() {return this;}
}
class D ... C ... //ok only if D <= C

The ThisType constraint can be strengthened by the ThisType wrapping oper-
ator

C [ThisType <= D] //ok only <f D <= (

We assume a default constraint ThisType <= Object, where Object is a pre-
defined class with no members.

To conclude this section, we show a more significant example, where we also
assume to have the type void and some statements in the syntax.

The following class DBSerializer, an example of the pattern template method
[11], contains the method execute that opens a connection to a database and
writes some data. While the behaviour of execute is fixed, the details on how to
open the connection are left unspecified, and the implementation of the method
serialize can be changed. This is reflected by the method modifiers. Class
DBConnection is a given library class.

abstract class DBSerializer {
abstract DBConnection openConnection();
virtual void serialize (DBConnection c) {}
frozen void execute() {
DBConnection connection = openConnection();
// .
serialize (connection);
connection.close () ;

}

Suppose we want to specialize the class DBSerializer for the DB server MySQL.
We can create this specialization, called MySQLSerializer, in two steps: first, we
provide an implementation of method openConnection with the specific code for
MySQL, then we hide it, since clients of MySQLSerializer should never invoke
this method directly.

We start by defining an auxiliary class _MySQLSerializer, merging DBSerializer
with an anonymous basic class:

class _MySQLSerializer
merge
DBSerializer[constructor(String cs) {
super ()
1,
{ local String connectionString;
constructor (String cs) {

connectionString = cs;
}
virtual DBConnection openConnection() {
/% ... use connectionString ... */}

}

Note the use of the constructor wrapper: the constructor of the anonymous basic
class has a String parameter, whereas that of the class DBSerializer, which
has no fields, is the default (parameterless) constructor. Hence, a constructor
wrapper is inserted, so that the classes we are merging have both a construc-
tor with the same parameters. This allows to create objects of the new class
with expressions like new _MySQLSerializer ("someConnectionString...").
As mentioned before, the class _MySQLSerializer provides, along the method
execute, the method openConnection that we can hide as follows:

class MySQLSerializer
hide openConnection in _MySQLSerializer

Consider now the following class Person, providing a method, named write, to
serialize its objects to a database:

class Person { //
frozen void write(DBConnection c) {
/* sertalizes the data on c*/}

}

Notwithstanding the inherited method DBSerializer.execute writes the data
by invoking the method serialize and not write, using the class Person with
MySQLSerializer is not a problem, since we can rename the method before
merging the two classes:

class MySQLPersonSerializer
hide serialize in
override
(rename write to serialize in Person)[
constructor (String cs){super (O}

] s
MySQLSerializer

2 FJi1G calculus
The syntax of the calculus is given in Figure 2. Besides class names, (external)

names and variables, we assume an infinite set of internal (member) names n.
A program consists of two components: a sequence of class declarations (class

name and class expression), as in FJ, and a sequence of subtype declarations. We
assume that no class is declared twice and order is immaterial, hence we can
write p(C') for the class expression associated with C.

Class expressions CFE are basic classes B, class names C, or are inductively con-
structed by a set of composition operators. Let us say that C “inherits from” C’
if the class expression associated with C' contains as subterm C’, or, transitively,
C” which inherits from C’. In a well-formed program, we require this generalized
inheritance relation to be acyclic, exactly as it is usually required for standard
inheritance.

D = cd leg
cd ==Cw—CE
leg ==C<C
CE ==B|C|
CE1+ CE> sum
| o¢|CE|s0 reduct
| freezeyCE freeze
| CE[K(C z){e}]CE[TT< (]
o t=N:T—N"T, +— N:T renaming
N «=F|M external member name
T «=C|MT member type
MT :=C—C method type
B i=[lols)
L t=n:T—N input map
o = N:T—n output map
n =f|lm internal member name
p ={rprn} local part
T =TT<C
o a=Ch
K = =K(C z){f=¢e}
L = C m(C z){return e;}
e w==zl|eF|eM()|f|m(e)]|new C(e)
| [E;v]e] block
| C(f=e) (pre-)object

v,v9 = O(f=e)

value (object)

Fig. 2. Syntax

Except for some shorter keywords for saving space, the only differences in basic
classes w.r.t. the surface syntax given in Figure 1 are the following:

— There are no modifiers, since their semantics is encoded by distinguishing
between external and internal member names, as explained in detail below.
This solution is typical of module calculi [19,2], and allows a simpler and
intuitive model of composition operators. Internal names are used to refer to
class members inside code (method bodies), and can be safely a-renamed.
On the contrary, external names are used in class composition via operators
and in selection of class members by clients.

— Correspondingly, basic classes include, besides previous components which
are collected in the local part, an input map from internal to external names,
and an output map from external to internal names.

— Expressions include runtime expressions, that is, (pre-)objects and blocks.

Input and output maps are represented as sequences of pairs where the first ele-
ment has a type annotation. In an input map, internal names which are mapped
in the same external name are required to have the same annotation, whereas
this is not required in output names, that is, the same member can be exported
under different names with different types, see the type system in next section.
Renamings o are maps from (annotated) external names into (annotated) exter-
nal names, represented as sequences of pairs; pairs of foorm _ +— N:T are used
to represent non-surjective maps.

We denote by dom and cod the domain and codomain of a map, respectively.
Given a basic class [¢t] o] p], with p = {7 @ Kk i}, we denote by dom(fz) and dom ()
the sets of internal names declared in 7z and @, respectively, which are assumed
to be disjoint. The union of these two sets, denoted by dom(p), is the set of local
names. An internal name n is, instead, abstract if nedom(¢), t(n)gdom(o), and
virtual if «(n)€dom (o). An external name N is abstract if Necod(r)\dom(o),
virtual if N€cod(t)Ndom(o), frozen if Nedom(o)\cod(t). In a well-formed basic
class, local names must be distinct from abstract/virtual internal names, that is,
dom(:)Ndom(p)=0. Moreover, cod(o)Cdom(p), and, denoting by names(e) the
set of internal names in an expression e, names(e)Cdom(t)Udom(p) for each
method body e.

A basic class of the surface language can be easily encoded in the calculus as
follows. For each member name N we assume (at most) a corresponding external
name N and (at most) two internal names n,n’, depending on the member
kind, as detailed below. Client references to N are unaffected, whereas internal
references are translated according to the member kind:

— if N is abstract, then there is an association n— /N in the input map, and
internal references are translated by n,

— if N is virtual, then there is an association n—N in the input map, an
association N+—n' in the output map, a definition for n’ in p, and internal
references are translated by n,

— if N is frozen, then there is an association N+n’ in the output map, a
definition for n’ in p, and internal references are translated by n’.

— if N is local, then there is a definition for n’ in p, and internal references are
translated by n'.

Inside constructor bodies, a field name F' on the left-hand side is always trans-
lated by f’ (and all internal accesses/invocations are forbidden in the initializa-
tion expressions).

For instance, the class C shown in the previous section is translated by

[mo:() —int — Ma| Mi:() — int — mi, Ma:() — int — my,| p]
p=A1
TT<Object

KO{}

int mj(){return 1+ mq;}
int mj(){return m; + ms;}
int m3(){return 1;}

}

We describe now the two kinds of runtime expressions introduced in the calculus.
Expressions of form C(f=e) denote a pre-object of class C, where for each field
f there is a corresponding initialization expression. Note the difference with the
form new C(e), which denotes a constructor invocation, whereas in FJ objects
can be identified with object creation expressions where arguments are values.
As already noted, in FJ it is possible, and convenient, to take this simple and
nice solution, since the structure of the instances of a class is globally visible to
the whole program. In FJIG, instead, object layout must be hidden to clients,
hence constructor parameters have no a priori relation with fields.

Values of the calculus are objects, that is, pre-objects where all initialization
expressions are (in turn) values. We use both v¢ and v as metavariables for
values of class C, the latter when the class is not relevant.

Moreover, runtime expressions also include block expressions of the form [fz; v | e],
which model the execution of e where method internal names are bound in 7
and field internal names in the current object v. Hence, denoting by dom(v) the
set {fi,...,fn} if v=C(fi=v1...fn=en), a block expression is well-formed only
if names(e)Cdom(i)Udom(v) (hence names([f; v | e]) =) and these two sets
are disjoint.

The semantics of an expression e in the context of a program p can be defined
in two different ways.

The former, which we call flattening semantics and illustrate in this section,
is given in two steps. First, p is reduced to a flat program p’, that is, a pro-
gram where every class is basic. To this end, operators are performed and the
occurrences of class names are replaced by their defining expressions. Then, e
is reduced in the context of p’. Note that in this case dynamic look-up is al-
ways trivial, that is, a class member (e.g., a method) can be always found in the
class of the receiver. In next section, we define an alternative direct semantics,
where expressions are reduced in the context of non flat programs, hence where
dynamic look-up is non trivial.

Flattening rules are defined in the top section of Figure 3. We omit subtype
declarations for simplicity since they do not affect semantics.

CE— CE'
p,C+— CE—p,C — CE’

(cpECl)

(cpEC2)

p,C+— B—p[B/C],C — B

pi={7 @ K(C o){f=e;} Fi;} i € {1, 2}
[L|0]_ ‘pl] + [L|02|p2] — [L|01,02 |p] p={7 71,72 K(C z){f=ey, f=e>} 11, Ba}

(sum)

(REDUCT)

srt]o]plige — [0 0 L]0 0 0| p]

n’=o(N)
N & cod(r)

(FREEZE)

freezey[e, n:T—N ...npg:T—N|o|p]—[t]|o|p[n'/m] ... [n'/ng]]

(TT WRAPPING)

[L[o{TT<C" @ & BHIT<C]— [t[o[{TT<C ¥ & 1}]

=1 ...Tn

(K WRAPPING) —— p={7PK(Cirz1...Cpzn){f=€} 1}
[t]o] p[K(C z){E}] —[t]o|p'] » = {r 2 x(T o) {F=cle/a]} B}

¢ —)p el (CLIENT-FIELD) p(C):[L‘O‘{T pr ﬂ}]
Efe} —p (¢} vOF —y [0 f]

(cTx)

p(C)=[lol{T @ r [}]
WO M@) —, [00 [m(@)] ="

(CLIENT-INVK)

f ¢ HB(E)
(INT-FIELD) v=C(fi=v1...fn=vn)

[v ELf Y] —p (B0 E{vi}] r=£

m ¢ HBSSL
[0 [E{m(0)}] — [v |E{e[v/][v” /this]}] FOM=F e

(INT-INVK)

p(?)Z[W(OéP] O o) T=5) 71
(OBJ-CREATION) ——— =17 ¢ K z1...Ch T =e}t
new C(7) —, C(f=e[o/a]) o=r a0 :

(EXIT-BLOCK) —— - names(e):@
[0] e] —p e

Fig. 3. Flattening semantics

The first two rules define reduction steps of programs, which can be obtained
either by reducing one of the class expressions, or, if some class C' has already
been reduced to a basic class B, by replacing by B all occurrences of C as
subterms of class expressions.

The remaining rules define reduction steps of class expressions. Rules for sum,
reduct and freeze operators are essentially those given in [2], to which we refer
for more details. We omit standard contextual closure for brevity.

The expression o1, 09 is well-formed only if the two maps have disjoint domains
(analogously for other maps). Hence, rule (SUM) can only be applied (implicit
side conditions) when the two sets of local F are disjoint (dom(p1)Ndom(p2)=0),
as are the sets of output names (dom(o1)Ndom(02)=0). The former condition
can be always satisfied by an appropriate a-conversion, whereas the latter corre-
sponds to a conflict that the programmer can only solve by an explicitly renaming
(reduct operator). Input names are required to be the same, and the two con-
structors are also required to have the same parameters. This is not restrictive
since these components can be always made equal by reduct and constructor
wrapping operators, respectively.

In rule (REDUCT) the symbol o denotes composition of maps. New input and
output names are chosen, modeled by cod(c*) and dom(c°), respectively. Old
input names are mapped in new input names by o*, whereas new output names
are mapped into old output names by ¢°. Input names can be shared or added,
whereas output names can be duplicated or removed. Composition is well-formed
only if type annotations are the same and the annotation of the new name is
kept in the resulting map. That is: if ¢ contains n: T+— N, then ¢* should contain
N:T—N':T’, and o' or will contain n:T"— N’; if 0° contains N":T"— N:T, then
o should contain N:T+n, and o o ¢° will contain N': T+ n.

In rule (FREEZE), association from internal names into N are removed from the
input map, and occurrences of these names in method bodies are replaced by
the local name of the corresponding definition, thus eliminating any dependency
on N. The second side condition ensures that we actually take all such names.
Rules for constructor and ThisType wrapping just correspond to changing the
constructor and the ThisType constraint for a class, respectively.

Reduction rules are given in the second section of Figure 3.

The first rule is the standard contextual closure, where £ denotes a one-hole
context and £{e} denotes the expression obtained by filling the hole by e.
Client field accesses and method invocations are reduced in two steps. First,
they are reduced to a block where the current object is the receiver and the
expression to be executed is the corresponding internal field access or method
invocation on the name found in the receiver’s class; moreover, methods found
in the receiver’s class are copied into the block and used for resolving further
internal method invocations.® Then, the following two rules can be applied.

6 Alternatively, the method body corresponding to an internal name could be again
found in the basic class of the receiver; we choose this model because it can be better
generalized to direct semantics, see the following.

An internal field access can only be reduced if it appears inside a block. In this
case, it is replaced by the corresponding field of the current object. The first side
condition says that the occurrence of n in the position denoted by the hole of the
context &£ is free (that is, not captured by any binder around the hole), hence
ensures that it is correctly bound to the current object in the first enclosing
block. For instance, in the expression [@; v|m(f, ['; v’ | f])], the first occurrence
of f denotes a field of the object v, whereas the second occurrence denotes a field
of the object v’. Analogously, an internal method invocation is replaced by the
corresponding body, found in fz, where parameters are replaced by arguments and
this by the current object. We denote by fi(m) the triple (z; ...z, C1 ... Cy, €)
if @ contains a (unique) method C m(Cy z; ... C, x,){return e;}.

Note that there are two kinds of references to the current object in a method
body: through the keyword this (in client references, or in a non-receiver posi-
tion, e.g. return this), and through internal names. Whereas the former can
be substituted at invocation time, as in FJ, the latter are modeled by a block,
otherwise we would not be able to distinguish, among the objects of form v,
those which actually refer to the original receiver of the invocation.

In rule (OBJ-CREATION), note that only classes where all members are frozen can
be instantiated. This is a simplification: the execution model could be easily gen-
eralized to handle internal field access/method invocation on a virtual internal
name by retrieving the input map as well in blocks (in rules (CLIENT-FIELD) and
(CLIENT-INVK)) and adding two reduction rules which, roughly, reduce such an
internal field access/method invocation into the corresponding client access. We
preferred to stick to an equivalent simpler model which, assuming that all classes
have been frozen before being instantiated, avoids these redundant lookup steps.

3 Type system

The type system uses four kinds of type environments, shown in Figure 4.

A = C:CT leq class type environment

CT :: = [X*; X°; C; C] class type

I «=nT internal type environment

I =z:C parameter type environment

b =N:T signature

A" = C.T runtime class type environment

Fig. 4. Type environments

A class type environment is a pair consisting of a map from class names into
class types and a sequence of subtype declarations. A class type is a 4-tuple
consisting of input and output signatures, constructor type and type of this.
We use the abbreviated notations C < C' € A and A(C) = CT.

Signatures are maps from external names into types.

We denote by mtype(A, C, N) the type of member named N in A(C'), which is
the output type’ for a defined member, the input type for an abstract member.
Internal type environments map internal names to types. Parameter type en-
vironments map variables (parameters) into class names. Finally, runtime class
type environments map class names to internal type environments.

Typing rules in Figure 5 define the judgments - p:A for programs and A +
CE:CT for class expressions.

In (PROG-T), a program has type A if each declared class C has type A(C) w.r.t.
A, ThisType constraints are satisfied, and declared subtyping relations are safe.
The judgment A - C < ' checks whether C' and C’ are in the reflexive and
transitive closure of the subtyping declarations in A. The judgment A - C' <
C’ oK checks whether C is a structural subtype of C. The straightforward
definition of these judgments is given in the Appendix in Figure 10.

In (BASIC-T), we denote by X* and X° the signatures extracted from ¢ and o,
respectively; analogously, we denote by I'*,I'* and I'? the internal type environ-
ments extracted from ¢, 7 and @, respectively.

A basic class is well-typed w.r.t. A under three conditions. First, methods have
their declared types w.r.t. A, the internal type environment, assigning to mem-
ber internal names their annotations, and the type in the ThisType constraint
(assumed as type for this). Second, the constructor has its declared type w.r.t.
A and the internal type environment, assigning to internal field names their
annotations. Finally, type annotations in input signature, output signature and
local part must be consistent, that is, a virtual member can be used inside the
class with a supertype of its exported type (first side condition), and a member
can be exported with a subtype of its internal type (second side condition).
Typing rules for sum, reduct and freeze are based on those in [2]. Rule (SUM-
T) imposes the same input signature, constructor type and ThisType constraint,
and disjoint output signatures. In (REDUCT-T), the side condition allows a mem-
ber to be imported with a more specific type, and exported with a more general
type. Analogously, rule (THIS-TYPE-T) allows the type of this to become more
specific.

Typing rules in Figure 6 define the judgment A; ;11 + e:C for well-typed
expressions.

They are analogous to FJ rules. However, note that member type is found in
receiver’s class for client field access and method invocation, whereas it is found
in the internal type environment for internal field access and method invoca-
tion. Also, note that (NEW-T) requires a class to have an empty input signature
in order to be instantiated (see comment to rule (OBJ-CREATION) in previous
section).

Finally, typing rules in Figure 7 define the judgment A; A™; I'; IT = e: C' for well-
typed runtime expressions. These expressions are typed using an additional type
environment A", which gives for each class the types of its internal field names.

" To provide a richer interface to clients.

AR C < CrVieln

AFC/<ClokVielk Ta=cl<cl..ci<cf
(PROG-T) — A= C1:CTy...Cn:CT,, leq
FCi—CE,...C,—CFE, lquA CT; =[_;_;_;C]]

CNAME-T - A C = CT
con A aor

A;FL,I‘H,];@ CrmI*

A T¥ ER:C AF °(N) < SY(N) VN € dom(x) N dom(o)
AF [L[o[{TT<C B r I}:[25 5% C; ¢] AF T TM)(e(N) < °(N) VN & dom(o)

(BAsIC-T)

AT CFp:MT; Vieln B=p1.. pn
A;F;CFE:FF ' =my:MTy...mp:MT,

(METHODS-T)

A; T this:Co2:Ch ... 2,:Cp F e: O ,
(METHOD-T) AR C' < Co
A;T;CF Co m(Cy o ... Gy zp){return e;}:Cy ... C,— G

A;Q;21:Ch .y O €1 C Vi€ 1.k K=K(Ch a1...Cn @) {fr
Asfi:Cf . fuiClE kG C, AT G S GTIE LS

=e1...fr = er}

(k-T)

At CEy:[24 39, C; O
Al CEq: (X4 X8, C O
(sum-T) — dom(X?) N dom(X3) =0
AF CEy + CE2:[X% X9, X9, C; O

AF CE: (x50 C;C)
AF 4 CE | poi[0" 0 X4 5° 0 6°; C; C]

AFT < TVN:T—N":T' € 6" Uc®

(REDUCT-T)

AF CE:[X', N:T; X°; C; O]
(FREEZE-T) — NGdOm(ZO)
At freezeyCE:[X4 X°; C; O

AF CE: (X% 20 C; O]

— Arc<c
AF CE[TTLCJ: (X" X9, C; C]

(TT-WRAPPING-T)

A0 21:Cy o my: O e C Vi € 1.k
Al CE[X 20 CF ... C; O

AFCl<ClVielk
AF CEK(C, x1...Cp xp){er ... e }]:[X4 X0 Cr ... Cp; (]

(K-WRAPPING-T)

Fig. 5. Typing rules for programs and class expressions

AT I E eg:C
(VAR-T) ———— — H(I) =C (CLIENT-FIELD-T) mtype(A, Co, F) =C
A I Fa:C A5 I E ey F:C

AT I E ey:Cy
A ITE e:ClVieln mtype(A, Co, M) = Ci ... Cy— C
AsTSITF eg.M ey ... e,):C AP GisGivieln

(CLIENT-INVK-T)

INT-FIELD-T) — Ff =C
()A;F;U}—f:C v

A ITE e:ClVieln I(m) = Ci...Co—C
AT I Em(er...e,):C AFC <G Vieln

(INT-INVK-T)

A ITE e Gl Yie ln 5o
A;T;ITFnew Cley...e,):C A7 G

0; _;C1...Chn;_]
< C;Viel.n

(NEW-T)

Fig. 6. Typing rules for expressions

Rule (BLOCK-T) checks that the current object is well-typed and the enclosed
expression is well-typed in the internal type environment corresponding to the
current object’s class in A”. In this case, the type of the block is that of the
enclosed expression. Rule (PRE-OBJ-T) checks that each initialization expressions
has a subtype of the type of the corresponding field internal name, found in the
internal type environment associated to the (pre)object’s class in A”. Rules for
other forms of expressions are analogous to those in Figure 6, plus propagation
of the runtime class type environment.

A DO TH CFml*

AAT T I = v O

A AT TC T Fe:C
A AT TSI F [v e]:C

AT(C'y = T°

(BLOCK-T)

A AT I F e:Cl Vi e 1on AT(C) = fi:Cy . fa:C
N AT O(fi = eise fo = €3):C AT Gs Gvieton

(PRE-OBJ-T)

Fig. 7. Typing rules for runtime expressions

Soundness of the type system is expressed by the following theorems.

Theorem 1 (Soundness w.r.t. flattening relation). IfF p:A, then p —— p’
for some p’ flat program, and + p’: A.

Proof. The proof is a simple adaptation of that given in [2].

Let us denote by A7 the runtime class type environment extracted from a flat
program p. That is, for each instantiable basic class declaration
C [0lo[{r @ x @}] in p, AL(C) =T

Theorem 2 (Progress). If b p:A and A; A;;@;@ F e:C, then either e is a
value or e —, €’ for some €.

Theorem 3 (Subject reduction). If - p:A, A; AL T E e:Coand e —,
e, then A; AL IT = e:C, and AF C < C.

4 Direct semantics

Direct semantics allows a modular approach where each class (module) can be
analyzed (notably, compiled) in isolation, since references to other classes do
not need to be resolved before runtime. In this case, look-up is a non trivial
procedure where a class member (e.g., method) is possibly retrieved from other
classes and modified as effect of the module operators.

In order to define direct semantics, block expressions are generalized as shown
in the top section of Figure 8. That is, besides the previous components, a block
contains a path map which maps internal names to paths 7w, which denote a
subterm in the class expression defining the class C of the current object (an
implementation could use a pointer). More precisely, a path 7w always denotes
a subterm of the form freeze,CE, and is used as a permanent reference to the
definition of member N in CE. Indeed, the external name N can be changed
or removed by effect of outer reduct operators; however, references via m are
not affected. Hence, when a reference 7 is encountered during current method
execution, lookup of N in CF is triggered (see more explanations below). In
flattening semantics, C' is always a basic class, hence this case never happens.
A generalized block expression [i;7i; v | e] is well-formed only if
names(e)Cdom(i)Udom(f)Udom(v) and these three sets are disjoint.

The center section of the figure contains the new rules for expression reduction.
When a member reference (external name or path) N needs to be resolved, the
lookup procedure starts the search of N from receiver’s class C and, if successful,
returns a corresponding internal name inside a block expression, as shown in
rules (CLIENT-FIELD) and (CLIENT-INVK). In flattening semantics, C is always
a basic class, hence lookup is trivial and the side condition can be equivalently
expressed as in the analogous rules in Figure 3.

When an internal name n is encountered, it is either directly mapped to a def-
inition, or to a path. The former case happens when n was a local name in
the basic class containing the definition of the method which is currently being
executed. In this case, the corresponding definition is taken, as shown in rules

Ton=d1.. .0 path (i € {1,2})

N:=N|~x member reference (external name or path)
[1= mi+—T1...Ng—TE path map

e G v el (generalized) block

lookup, (M, C) = [&;7|m]

(CLIENT-INVK)

vC M (V) —yp [575 09 [m(v)]

f ¢ HB(E)
(INT-FIELD) v = C(flzvl . .fn:'un)

[v | E{f Y] —p [v E{v}] r=£

(INT-INVK) :n ¢ HB(E)i
575 0] E{m(®)}] — [i:75: 0| E{e[o/T][vC femis]}] Fow = .00
(oaTH) n € names(e)

im0 [e] —y (605 Al /o], 75 0C [e[nJn]] tookurstm O) = 5H vl
p

I E—lookupp(C) =K(C1 z1...Ch z,){f=¢e}
new C(7) —, C(f=e[v/z]) *=™ "

(OBJ-CREATION)

(EXIT-BLOCK) names(e):@

(B v]e] —p e

lookupp<N,ﬂ, C)= l00kupp<]§/7 m, CE)

if p(C)=CE
lookup ,(N, 7, [t]o, N=n|{T @ x T}]) = [1;0; | n]
lookup (N, , CElA + CE3) = ai([t; 5; 2| n])

if lookup (N, 7.4, CE;) = [1; 51| n],i € {1,2}
lookup (N, , UL‘CAE“UQ = [o* o ;| 0]

if lookup,(N', 7.1, CE) = [1;1; fi| n],

N’ =¢°(N)if N = N,N' = N otherwise
lookuppﬂif, m, freezeyCEY = [1; 0, ni—m . .. ng—m; | n]

if N#m, N & cod(v),

lookupp<N,7r.1, CE) =[t,mi—N ... nx—N; | n
lookup,(m, , freezeyCE) = [1; 1, nmr—=7 ... =3 | 0]

if N ¢& cod(r),

lookup (N, 7.1, CE) = [1, n1|—>1\{...nk»—>N;Z;ﬁ|n]
lookup,,(N,m, CE[TTLC]) = lookup,(N,n.1, CE)
lookup (N, m, CE[K(C z){e}]) = lookup,(N,=.1, CE)

k-lookup,,(C) = k-lookup,(CE)
if p(C)=CE

lookup, (00| {r 7}) =
k-lookup,(CE1 + CE2) = K(C z){a1(f =€), aa(f = €')}
if k-lookup,(CE1) = K(C z){f = e},
k-lookup,(CE2) = K(C z){f = ¢’}

k-lookup,,(5+|CE|g0) = k-lookup,(CE)

k-lookup,,(freezeyCE) = k-lookup,,(CE)

k-lookup,,(CE[TT< C]) = k-lookup,,(CE)

k-lookup, (CE[K(C 2){e}]) = K(C z){f=c[e/a]}
HZ=ux...2,,

k-lookup,(CE) =K(Cy z1 ... Cy zn){f=¢}

Fig. 8. Direct semantics

(INT-FIELD) and (INT-INVK). The latter case happens when n was an abstract
or virtual name inside the basic class containing the definition of the method
which is currently executed, and n has been permanently bound to some defini-
tion by an outer freeze operator (recall that only classes where all members are
frozen can be instantiated). In this case, lookup of this definition is started from
receiver’s class via the path «, and, if successful, the internal name n is replaced
by the name n’ found by lookup; moreover, the corresponding path map and
methods are merged with the original ones (a-renaming can be used to avoid
conflicts among internal names in this phase). This is shown in rule (pATH). In
flattening semantics, the latter case never happens, hence only the first two rules
are needed.

Creation of an instance of class, say, C, also involves a constructor lookup proce-
dure, which returns, starting from class C, the appropriate constructor, possibly
by retrieving and modifying constructors of other classes (this generalizes what
happens in standard Java-like languages, where the superclass constructor is
always invoked). In flattening semantics, C is always a basic class, hence con-
structor lookup is trivial and the side condition can be equivalently expressed as
in the corresponding rule in Figure 3.

The remaining rule is analogous to that given for the flattening case.

Lookup and constructor lookup are defined in the bottom section of the figure.
The lookup procedure is modeled by a function which, given a program p, takes
three more arguments: a member reference (external name or path) N, a path
m, which acts as an accumulator and keeps track of the current subterm of
the class expression which is examined, and a class name C. When lookup is
started, m is always the empty path A, and lookupp<N, A, C) is abbreviated by
lookupp<N, C).

The lookup function returns a triple consisting of input map, path map, methods
and an internal name, written [¢; ;7 | n]. However, the final result of lookup
(that is, the result returned for the initial call) is expected to be always of form
[0; 2; | n], abbreviated by [i;7z] n], since all abstract/virtual internal names are
expected to be eventually bound to a path as effect of some freeze operator.
The first two clauses defining lookup are trivial and state that looking for a
member reference starting from a class name C' means looking in the definition
of C, and that looking for an external name N in a basic class only succeeds
if the name is present in the class, and returns the corresponding input map,
methods and internal name. Note that the case where we look for a path 7 in a
basic class is expected to never happen.

The third clause defines lookup on a sum expression. In this case, lookup is
propagated to both arguments. This definition is a priori non-deterministic, but
is expected to be deterministic on class expressions which can be safely flattened,
since in this case an external name cannot be found on both sides. For member
references which are paths, instead, determinism is guaranteed by construction
since the path exactly corresponds to a subterm. In case lookup succeeds on one
of the two arguments, the result is modified by renaming field local names in a
way which keeps track of this argument. For instance, if lookup succeeded on the

first argument, then every field internal name f is renamed to f.1. This renaming
is denoted by «;. We choose this canonical a-renaming for concreteness, but any
other could be chosen, provided that it is consistent with that in constructor
lookup.

For instance, let us consider the following program (assuming integer values and
operations to be available, in order to write more readable examples):

C— Ci+ Gy
Cy— [0]...]{ int f; KO{f =3} ...}]
Co [D]..., M +— m|
{7 int f; K){f =5} int m(){return f + 1;}}]

and the expression new C().M(). An instance of class C' has two fields, inher-
ited from C; and (5, and initialized to 3 and 5, respectively. They are both
named f in the original classes; however, they are renamed during construc-
tor lookup (see the clause for sum), hence the above expression reduces to
C(f.1—3,f.2—5).M(). Now, M is invoked, starting the lookup from C, and
the search is propagated to both C; and C5. Only the lookup in C; is successful
and returns the result

[;;int m(){return f + 1;} | m]

which is modified in [;; int m(){return f.2+1;}|m] to take into account that the
method has been found in the second argument. Hence, this method invocation
reduces to [;int m(){return .2+ 1;}; C'(f.1—3, f.2—5)| m] where the body of
m correctly refers to the second field.

In flattening semantics, C' reduces to the following basic class:

0]...,M+— m]p]
p={7 int f.1; int f.2; k int m(){return f.2+ 1;}...}
k=K(O){f1=3,f2=5}

Note that here the clash between the two fields is resolved during flattening
(hence before runtime), by a-renaming. We have chosen as a-renaming the same
used in direct semantics as an help for the reader, but of course in this case any
other arbitrary a-renaming would work as well.

The fourth clause defines lookup on a reduct expression. In this case, lookup
of an external name is propagated under the name the member has in the ar-
gument, given by the output renaming ¢°. Instead, lookup of a path is simply
propagated, since paths are permanent references which are not affected by re-
namings. Moreover, the result of lookup on the argument must be modified to
ensure that internal names refer to the appropriate external names obtained via
the input renaming o*.

For instance, consider a program including

C MlHM{|C\IMHM'
C'— [m' — My | M — m|{ ... int m(){return m’();}}]

and assume that some method invocation triggers the lookup for M in C'. Then,
the lookup is propagated under the name M’ to C’. The lookup of M’ in C' is
successful and returns the result [m’ — Mi;;int m(){return m’();} | m] which
is modified in [m’ — M{;;int m(){return m’();} | m] as an effect of the input
renaming.

In flattening semantics, C' reduces to the following basic class:

[m' — M{|M — m|{ ... int m(){return m’();}}]

There are two clauses defining lookup on a freeze expression. The former han-
dles most cases, except the special situation in which we are exactly looking for
the member that has been frozen in the current subterm 7, which has the form
freezeyCE. In this special case (second clause) the lookup of N in CF is trig-
gered. Moreover, the result is modified, since internal names referring to N must
now refer to the permanent reference 7. Otherwise (first clause), the lookup is
propagated, and the result of the lookup on the argument is modified as in the
previous case.

The following example illustrates the second clause. Consider the program

C — freezepC’
C'—|f—F|F—f M- m]|
{ int f'; KO{f' = 42} int m(){return f + 1;}}]

and the expression new C'().M().

An instance of class C has one field, inherited from C’ and initialized to 42.
Hence, the above expression reduces to C(f'+—42).M (). Now, M is invoked,
starting the lookup from C, and the search is propagated to C’. The lookup in
C’ is successful and returns the result [f — F;;int m(){return f + 1;} | m],
which is modified in [; f — A;int m(){return f + 1;}|m], where A denotes the
empty path, to take into account that F' has been frozen. Hence, the method
invocation reduces to [f — A;int m(){return f + 1;}; C(f—42)| m], where the
body of m correctly refers to F' frozen in the top level freeze.

In flattening semantics, C' reduces to the following basic class:

DI F — f', M = m|{ int ' KO{f' = 42} int m(){return f’ + 1;}}]

Figure 9 shows a more involved example comparing flattening and direct seman-
tics.

The top section of the figure lists some abbreviations, the second shows the four
classes composing program p. Class A defines the frozen method M whose body
invokes the abstract method M’. Class B has one local field f initialized to 0
and defines the frozen method M’ which returns this field. Class C' is obtained
by summing A and B, and then freezing method M’. Finally, class D is obtained
by hiding method M’ in C (in the reduct, the input renaming is empty since
there are no input names, and the output renaming maps “no new name” into
M’ and is the identity on M) and then summing a new definition for M’. The
following three sections of the figure shows how the class expressions for C' and
D are reduced, the resulting flat program p’ and the reduction of expression

vP? = D(f.2.1 =0)

pu= C m(){return m'();}

p" = C m”"(){return f.2.1;}

ip = C m(){return m”();}; C m"(){return f.2.1;}; C m"’'(){return 8;}

Tgum = C m(){return m’();}; C m” (){return f.2;}

e = C m(){return m”();}; C m”(){return f.2;}

p= A=[m' s M| M m|{ KO} C m(){return m'(})]

B=[0|M' e m'|{ C f; K){f = 0} C m'(){return :}}]
C = freezey (A + B)
D =

0[C_—mrpamnt + [0 M= m' [{ KO{} C m'(){return 8;}}]

freezey (A+ B) —
freezeyfm’ — M'|M — m, M" — m” |{ C £.2; KO{f-2 =0} Ty} —
B M o M e |{ C' 1.2 KO{f-2 = 0} i}

0[Cl_nrrprens + [0 M = m/ [{ KO{} C m/(){return 8;}}] —
[0]M — m|{ C f.2; KO{f.2 =0} fic}]

+[0] M — m'[{ KO{} C m'(){return 8;}}] —

[0 M — m, M’ — m" |{ C f.2.1; KO{f.2.1 = 0} Tip}]

P = [m" = M'[M — m|{ KO{} C m(){return m’();}}]
(@] M" = m![{ C f; KO{f =0} C m'(){return f;}}]
@M — m, M" —m" |{ Cf.2; KO{f-2 =0} fic}]

[0 M — m, M = m" |{ € f.2.1; K(){f.21 = 0} Tip}]

SQW

new D().M() — v7.M() — [fip; v” |m(] —p [fip; v” |m” ()] —
[Fips v” | 21— [ip; v” 0] —p 0

new D().M() —» k-lookup,(D) = K(){f.2.1 =0}

P M() —, lookup, (M, A, D) = [A;m/ +— 1.1; u|m]
|m()] —»

|m'(O] —p lookup, (1.1, 4, D) = [A; A; "' |m"]

3
I
—
=
3
t\
e
S
=)
J

Fig. 9. Example

new D().M() in the context of p’. Finally, the last section shows direct semantics
of the same expression in the context of p.

The example shows how the method originally called M’ in B is correctly invoked
via the path 1.1, even though M’ has been hidden and then replaced by an
homonymous method.

The following theorem states that flattening is equivalent to direct semantics.
We denote by — the reflexive and transitive closure of the flattening relation,
and analogously for the reduction relation. The proof can be found in [15].

Theorem 4. If p—=p', then e ——, v iff e =, v.

5 Conclusion

We have presented FJiG, a core calculus which formalizes the Bracha’s Jigsaw
framework [7] in a Java-like setting. The design of FJIG comes out naturally, yet
not trivially, by taking Featherweight Java [14] as starting point and replacing
inheritance by the more general composition operators of Jigsaw.

We believe that such a core calculus can be useful for many research direc-
tions. First, it provides a simple unifying formalism for encoding and comparing
a large variety of different mechanisms for software composition in class-based
languages, including standard inheritance, mixin classes, traits and hiding. Then,
it can serve as the basis for the design of a real language based on Jigsaw prin-
ciples. Moreover, it could be enriched by behavioural types, leading to a class-
based specification language, in the spirit of, e.g., JML [16], allowing modular
development and composition of class specifications.

We have also defined two different execution models for the calculus, flattening
and direct semantics, and proved their equivalence. That is, we have shown
the equivalence of two different views on inheritance in a formal setting with a
more sophisticated composition mechanism, where, e.g., mixin classes and traits
can be subsumed. This can also greatly help in integrating such features, or
other modularity mechanisms, in standard class-based languages, since it gives
practical hints on implementation.

Apart from the two key references mentioned above, this work has been directly
influenced by work on traits [18,9], mostly by the recent developments [17,5,6].
In particular, we share with [5,6] the objective of replacing inheritance by more
flexible operators. Concerning flattening and direct semantics, the most direct
source of inspiration for our work has been [17], which defines a direct semantics
for traits. Essentially, their dynamic look-up algorithm can be seen as a simplified
version, handling sum and output reduct only, of ours.

The focus of this paper is on providing a simple and compact model for a lan-
guage based on the Jigsaw framework in a Java-like setting, hence we have only
outlined in Section 1 a simple surface language. As mentioned above, we leave
to further work a deeper investigation of a realistic language design, and a more
precise analysis on how different mechanisms such as standard inheritance, mixin
classes, traits can be encoded into FJi1G. We also plan to develop a prototype im-
plementation; a very preliminary interpreter of flattening semantics, assigned as

master thesis, can be found at http://www.disi.unige.it/person/LagorioG/FJig/.
We also plan to investigate smart implementation techniques of direct semantics
in the prototype interpreter.

References

1. Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam-—designing a Java ex-
tension with mixins. ACM Transactions on Programming Languages and Systems,
25(5):641-712, September 2003.

2. Davide Ancona and Elena Zucca. A calculus of module systems. Journ. of Func-
tional Programming, 12(2):91-132, 2002.

3. Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Stateful
traits. In Advances in Smalltalk - 14th International Smalltalk Conference (ISC
2006), volume 4406, pages 66-90. Springer, 2007.

4. Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Stateful
traits and their formalization. Comput. Lang. Syst. Struct., 34(2-3):83-108, 2008.

5. Viviana Bono, Ferruccio Damiani, and Elena Giachino. Separating type, behavior,
andstate to achieve very fine-grained reuse. In 9th Intl. Workshop on Formal
Techniques for Java-like Programs, 2007.

6. Viviana Bono, Ferruccio Damiani, and Elena Giachino. On traits and types in a
Java-like setting. In T'CS’08 - IFIP Int. Conf. on Theoretical Computer Science.
Springer, 2008.

7. Gilad Bracha. The Programming Language JIGSAW: Mizins, Modularity and Mul-
tiple Inheritance. PhD thesis, Department of Comp. Sci., Univ. of Utah, 1992.

8. D. Duggan and C. Sourelis. Mixin modules. In Intl. Conf. on Functional Program-
ming 1996, pages 262-273. ACM Press, 1996.

9. Kathleen Fisher and John Reppy. A typed calculus of traits. In FOOL’04 - Intl.
Workshop on Foundations of Object Oriented Languages, 2004.

10. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mix-
ins. In ACM Symp. on Principles of Programming Languages 1998, pages 171-183.
ACM Press, 1998.

11. Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design
Patterns: Elements od Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series. Addison-Wesley, 1995.

12. Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting. In
ESOP 2002 - European Symposium on Programming 2002, number 2305 in LNCS,
pages 6-20. Springer, 2002.

13. Tom Hirschowitz, Xavier Leroy, and J. B. Wells. Call-by-value mixin modules:
Reduction semantics, side effects, types. In ESOP 2003 - European Symposium on
Programming 2003, number 2986 in LNCS, pages 64-78. Springer, 2004.

14. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396-450, 2001.

15. Giovanni Lagorio, Marco Servetto, and Elena Zucca. Flattening versus direct se-
mantics for Featherweight Jigsaw. In FOOL’09 - Intl. Workshop on Foundations
of Object Oriented Languages, 2009. To appear.

16. Gary T. Leavens. Tutorial on JML, the Java modeling language. In Automated
Software Engineering (ASE 2007). ACM Press, 2007.

17. Luigi Liquori and Arnaud Spiwack. FeatherTrait: A modest extension of Feather-
weight Java. ACM Transactions on Programming Languages and Systems, 30(2),
2008.

18. Nathanael Schérli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable units of behaviour. In ECOOP’03 - Object-Oriented Program-
ming, volume 2743 of LNCS, pages 248-274. Springer, 2003.

19. J. B. Wells and R. Vestergaard. Confluent equational reasoning for linking with
first-class primitive modules. In ESOP 2000 - European Symposium on Program-
ming 2000, number 1782 in LNCS, pages 412—-428. Springer, 2000.

A Subtyping relations

(STRUCTURAL-SUB) mtype(A, C/, N) =T = mtype(A7 C, N) =T, A+ T<L T’
AR C<C' oK

AR C <
(REFL-SUB) — A(C) = _

ARG ...Co—C<(C]...ClL—=C AFC<LC

(METHOD-SUB)

AFC <0y AFCy < (s
(DECL-SUB) — C < c’ €A (TRANS-5)
AFC<C(C A C <Gy

Fig. 10. Subtyping relationship

B Proofs

Lemma 1. If A;A™; ;1T F e:C/) names(e) = (0 and e does not contain free
variables (parameter names), then A; A™;0;0 - e:C".

Lemma 2.

i If Ay AT T ITE E{e}:C, then, for some C, A; A" T 1T F e:C.
ii: If Ay A T ITH E{e}:C" and HB(E) =0, then, for some C, A; ;1T F e:C.

Lemma 3. IfF p:A, then

i: dom(p) = dom(A)

ii: for all C € dom(p)
A: A(C) = [X4 X9 C; O
B: p(C) = [t|ol{7 ¥ x 1}]
C: dom() = dom(X")
D: dom(o) = dom(X°)

E: #(7) = #(0)
F: AF p(C):A(C)

Lemma 4. For all A, C,N, mtype(A,C,N) = T iff (A(C) = [¥4X°, N
T,C;C| or A(C) =[2",N — T;X°;,C; C"]).

Lemma 5. If A; A" T IT - v©:C and mtype(A, C,N) = T, then

i: A(C)=[0;X° N~ T;C; '
ii: p(C) =[0]o, N — n|p]

Lemma 6.

i A AT AT(C); I F f: 00 A; AT 0,0 - C(fi = v1 - fn = v,):C implies f =
fir ;AT AY(C); T E 0;:C" and AR C7 < C.

ii: A, AT F [0S | m(e)):C and AT(C")(m) = C — C implies #(€) =
#(7).

Lemma 7. Any expression e which is not a value is of the form e = E{e'},
with:

=z or
= [g;v|e’] or
=f or

= m(v) or
=v.F or
=v.M(v) or
=new C((v)).

Theorem 5 (Progress). If - p:A and A; A7;0;0 e:C, then either e is a

P
value or e —, €’ for some €.

Proof. The proof is by induction on the typing rules.

(vAR-T) This case is empty since IT = ().

(PRE-0OBJ-T) If the term is of the form £{e} with e not a value, then it can be
reduced by (cTX) and inductive hypothesis. Otherwise, the term is of the
form C(v), hence is a value.

(NEW-T) If the term is of the form £{e} with e not a value, then it can be
reduced by (¢TX) and inductive hypothesis. Otherwise we have:

A A AT I new C(og ... v,):C

B: Ay AT ;T v Cf for i € 1n

C: A(C)=1[0;2°,Cy...Cp; O]

D: AR C! < Cjforiel.n

We can apply (OBJ-CREATION) since the implicit and explicit side conditions
are verified:

— The term is of the form new C(7) by (A).
— p(C)=1[0|o|{r pK(z){e} u}] is verified by (C), Lemma 3.i, Lemma 3.ii.B,
Lemma 3.ii.C.

well- deﬁned since
#(1) = #(C)by (B)
#(0) = #(0) by (D)
#(#(C) by Lemma 3.ii.E
. #(*) #(T) by transitivity of equality
(CLIENT-FIELD-T) If the term is of the form £{e} with e not a value, then it
can be reduced by (¢TX) and inductive hypothesis. Otherwise we have
A: AAT T IT o0 F:C
B: Ay AT T = v©:Cy (by (PRE-OBJ-T))
C: mtype(A, Cy, F) = C
We can apply (CLIENT-FIELD) since the implicit and explicit side conditions
are verified:
— The term is of the form v .F by (A).
— p(Cy) =[0|o, F — f|p] by (B), (C), Lemma 5.(ii) and well-formedness
of class Cj.
(CLIENT-INVK-T) If the term is of the form £{e} with e not a value, then it
can be reduced by (¢TX) and inductive hypothesis. Otherwise we have
A A AT T IT - o©0 M(€):C
B: A; AT ;0T = v
C: mtype(A, Co, M) = C—C
We can apply (CLIENT-INVK) since the implicit and explicit side conditions
are verified:
— the term is of the form v.M (%) by (A)
— p(C)=1[0|o, M — m]|p] by (B), (C), Lemma 5.ii
— [@; v | m(v)] is well-formed since m € p by well-formedness of class Cp.
(BLOCK-T) we have:
A A AT 004 [msv]e]:C
B: A;0;0F v:C”
C: A(") = [0; x°; C; O]
D: A,A’”,AT(C’),(Z) FeC
The proof is divided in subcases, depending on the form of the inner e:
— if the block contains a value, then it can be reduced by (EXT-BLOCK)
— else, if the block does not contains any sub-block:
o If e is of the form E{f}, then we have [@; C(fi = v1...f, = vp) |
E{f}Y —p [C(fi = v1...fn = vn)| v by (INT-FIELD), since the
implicit and explicit side conditions are verified:
* HB(E) = 0 because there are no sub-blocks,
x f = f; by (D), Lemma 2.ii, Lemma 6.i.
e If e is not of the form e = £{f}, then, by Lemma T7:
*x e = E{z} impossible because we are in a well-typed block
x e = &{[m; v|]} impossible because there are no sub-blocks
*x e = S{m()}: in this case, it must be [@; v | E{m(V)}] —,
[72; v | e[0/7][vC /this]]
by (INT-INVK), since the implicit and explicit side conditions are
verified:

- [v/) is

@\»—'

EE‘Q\

- HB(E) = 0 because there are no sub-blocks.
- #(7) = #(T) by Lemma 2.ii and Lemma 6.
x e =E{e'} and ¢ = v.F or ¢ = v.M(V) or ¢ = new C((v)):
in this case, names(e’) = 0, and we can apply (CTX), since:
A; AT Ty I F €’:C* by Lemma, 2.i; by Lemma 1 we have A; A™: 0; 0 -
e’:C” since names(e’) = () and €’ has no free variables (it is in
a well-typed block). Now, ¢’ is of a form which we have already
proved can be reduced.
— if the block contains one or more sub-blocks: there exists an inner block
that does not contain sub-blocks. Such sub-block is well-typed by Lemma 2
and it can be reduced by (cTX) because it falls in the previous case.

Theorem 6 (Subject reduction). If - p:A, A; AL T F e:Coand e —
e, then A; AL Iy e b= C':, and AF C < C.

Proof.
Note that F p:A implies that for any class C' = CE (BASE-T) holds for CFE.
The proof is by induction on the reduction rules. We show some cases.

(CLIENT-FIELD) By (CLIENT-FIELD) we know
A vO F —, [0 | f]
B: p(Cy) = [t]ol] with
- p={rp K}
C: F.:C'— feo
D: C f € % by well-formedness of p(Cp)
E: AF C < C' by (BASE-T)
It is typed by (CLIENT-FIELD-T) so
F: A;A™ T IT v F:C7
G: A;A™ T IT - 0%:Cy
H: mtype(A, Cy, F) = C’
[7i; v | f] is typed by (BLOCK-T) (that uses (INT-FIELD-T)) because all the
implicit and explicit side-conditions are verified:
— A;A70;0 F v%:Cy by (G) and Lemma 1
— A AT AT (Cy); 0 f:C by (INT-FIELD-T), definition of A” and (D).
— A, I'" O+ @:I'" by Lemma 2.ii.F and (BASIC-T)
We conclude that A; A”; I'; IT F [@; v | f]:C and by (E) and (F) we prove
the case.
(CLIENT-INVK) By (CLIENT-INVK) we know
A: 0O M (vy . vp) —p [B0° m(vr .. 0]
B: p(Cy) = [¢]o]p] with
—p={T P rn}
C:. M:Cy...C,—Cce€o
D: C¢'m(C{ z,...,C) z,){return e;} € i by well-formedness of p(Cp)
E: AFC; < Clforiel.nand AFC'<C
It is typed by (CLIENT-INVK-T) S0
F: A A" T F v©0:C.
G: A AT T I -0 M(vy .. .vy,):C.

Ay AT T IT F v CF for i € 1o,
mitype(A, Co, M) = Cy...C,— C.
Ak Cz” < C;foriel.n.
AF C < (] fori e l.n by (L), (E) and transitivity of subtyping
relation.
[v | m(vy ... v,)] is typed by (BLOCK-T) (that uses (INT-INVK-T)) be-
cause all the implicit and explicit side-conditions are verified:

— A AT 0:0 F v%:Cy by (D) and Lemma 1.

— A; AT AT (Co); 0 m(vy ... vn): C by (INT-INVK-T), definition of A", (D)

and (K).

— A, TP O+ @:I'" by Lemma 2.ii.F and (BASIC-T)
We conclude that A; A™; I'; IT F [f; v |m(vy ... v,)]:C” and by (E) and (G)
we prove the case.

Theorem 7. If p—>p’, then e L>p v iff e L>p’ v.

To prove the theorem, we first of all define two congruence relations ~, and ~
on expressions, the former indexed on programs:

— ~, is the least congruence relation s.t.
[0, =m0 | e]~p[i, 5 [n! /n], 7' v | e[n’ /n]]
if lookup,(C,m) = [i'; 7@’ |n'].
— ~ is the least congruence relation s.t.
(&7, pive] ~ [v e]
if u=C m(C z){return e;}, mgnames(e)Unames(f).

The former congruence states that a block expression is equivalent to another
where an association from internal name to path has been resolved by lookup,
and path map and methods expanded. The expression on the left-hand-side,
intuitively, is a lazy version which requires a further lookup of 7 only when n is
needed, whereas in the right-hand-side this lookup has already been performed.
The latter congruence states that a block expression is equivalent to another
where a useless method has been removed.

Lemma 8. If p—p’, lookup,(N,n, C) = [i;7i, | n], then there exist [i'; 1y | n],
[0: 735 | n], [0 75| n] s.t.

lookup,, (N, =, C) = [i'; iy | n],

(2578, [n] ~p [0; 725 | n],

[0 71 |] ~pr (03755 | n]

[0; 2 [n] ~ [0; 725 | n]

Proof. By induction on the definition of p — p’.

(cpEC1) We have
CE — CF/,
p=p,C— CE—p =p,C— CE
We show, by induction on the definition of CE — CE’, that, for any N, 7
the statement of the lemma holds for the triple (N, m, C'). This is enough to
prove the thesis since other class names are not affected.

(sum) We have
CE = CE, + CE,
CEy = [t]or[{7 &, K(C z){/i = e} [0, }]
CE2 = [t]o2[{T @y K(C z){}f2 = €2} [i}]
CE' = [t]or, 0| {r %1%, K(C)i = 1, o = 2} T, T}
Moreover, lookup,(N,m, CE) is defined only if (01, 02)(N) = n for some
n. By well-formedness of o1, 0o this means that either oy (N) is defined
or 02(N) is defined, but not both. Let us assume o;(N) = n (the other
case is analogous). Then,
lookup (N, 7, CE) = [1; 1 (fi1); |
}lOOkuppUV’ﬂa CE) = [y 0n(f1y), aa(fg); |
and we get the thesis since, by well-formedness of CE’, n € dom (v, a1 (Ji1))
and names(a1(fy)) N dom(e, aa(fiy)) = 0.
(rREDUCT) We have
CE = oultlo| {7 % 5 7} e
CE' = [0t ot|ooc®|{T P k T}]
Moreover, lookupp(N, 7, CF) and lookupp<N, 7, CE') are defined only if
N = N and o(N) = n for some n. Then,
lookup (N, 7, CE) = [0 o 1; ;1 |
Jlookup,,(N, 7, CE") = [0" o 1;5; n |
:lnd we get the thesis.
(FREEZE) We have
CE = freezey|t,n:T — N ...n:T — N |o|{T ¥ k i}]
CE' = [t]o[{r & r Hlo(N)/m] ... [n/o(N)]}]
N ¢ cod(1)
Moreover, lookupp<N, 7, CE) and lookupp<N, 7, CE') are defined only if
N = N’ and o(N') = n’ for some n’. Then,
lookup,(N', 7, CE) = [1; 11, n; ZSTF; n’|
Jlookup ,(N', m, CE') = [1; T, m lnilﬁ(n’); n'|
]Since CE is the m-subterm of p(C'), lookup ,(m, A, C') = lookup (7, 7, CE) =

[6; 0, My ’LOSIT(; n| with n = o(NN), hence the thesis follows.
(WRAPPING) Trivial.
(cTx) The proof is by structural induction on the context. We show the
CE,— CE]
CEq{+ CEq— CE’l + CE>

following case (the others are analogous):

We have to prove that lookupp(N,w, CE1+ CE3) ~p ¢ lookuppUV,m CE' + CEs)

for all N and 7. There are two cases. A
— lookup (N, 7, CEy + CEq) = lookup,(N, 7.1, CEy). In this case, by
inductive hypothesis
- lookupp<N,7r, CE, + CEy) = lookupp<N,7r.1, CE3).

(cpEC2) If p—p', lookup, (N, C) is defined, then lookup, (N, C) ~,, lookup,, (N, C).

1. This can be proved by induction on the definition of CE — CE'.
2. By induction on the definition of p — p’.

Then, Theorem 4 follows as a corollary of the following.
Theorem 8. If p—p', e1 —, e, and e; ~ ey, then there exists e, ef, e
s.t.:

€1 p €l ~p €
2 ¢

Vi 1
€2 —p’ €3 ~p’ €3

Proof.

