Skip to main content

Virtual Fence for a Surveillance System

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5507))

Included in the following conference series:

  • 1276 Accesses

Abstract

This paper presents a method for defining one or more virtual restricted zones within a surveillance area which is observed with stereo cameras. When an object enters a restricted zone, the system highlights the object shown in the monitoring screen or triggers other devices to produce a visual or auditory alarm. The proposed method works by extracting the foreground objects for both the left and the right images from their respective stereo cameras. Then it estimates the object’s position in terms of depth plane using image shifting and number of overlapping pixels. Finally, it determines whether there is a collision between objects and restricted zones in order to trigger an alarm where necessary. The algorithm has been tested with a series of stereo videos, in which samples of it are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A System for Video Surveillance and Monitoring: VSAM Final Report, Technical report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University (2000)

    Google Scholar 

  2. Stefano, L.D., Marchionni, M., Mattoccia, S.: A Fast Area-based Stereo Matching Algorithm. In: Image and Vision Computing, vol. 22, pp. 983–1005 (2004)

    Google Scholar 

  3. Tombari, F., Mattoccia, S., Stefano, L.D.: Segmentation-based adaptive support for accurate stereo correspondence. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 427–438. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Sun, C.M.: Fast Stereo Matching using rectangular Subregioning and 3D Maximum-surface Techniques. International Journal of computer Vision 47, 99–117 (2002)

    Article  MATH  Google Scholar 

  5. Kaufman, P.L., Alm, A.: Adler’s Physiology of the Eye, 10th edn. Elsevier Health Sciences, Amsterdam (2002)

    Google Scholar 

  6. Sekuler, R., Blake, R.: Perception, 3rd edn. McGraw-Hill, New York (1994)

    Google Scholar 

  7. Piccardi, M.: Background Subtraction Techniques: A Review. In: IEEE International Conference on System, Man and Cybernetics, pp. 3099–3104 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yong, Y.S., Hon, H.W., Osman, Y.S., Chan, C.H., Then, S.J., Chau, S.W. (2009). Virtual Fence for a Surveillance System. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03040-6_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03039-0

  • Online ISBN: 978-3-642-03040-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics