Skip to main content

Combination of Geometrical and Statistical Methods for Visual Navigation of Autonomous Robots

  • Conference paper
  • 1243 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5604))

Abstract

For visual navigation of an autonomous robot, detection of collision-free direction from an image/ image sequence captured by imaging systems mounted on the robot is a fundamental task. This collision free direction provides the next view to direct attention for computing the next collision free direction. Therefore, the robot requires a cyclic mechanism directing attention to the view and computing the collision free direction from that view. We combine a geometric method for free space detection and a statistical method for visual navigation of the mobile robot. Firstly, we deal with a random-sampling-based method for the detection of free space. Secondly, we deal with a statistical method for the computation of the collision avoiding direction. The robot finds free space using the visual potential defined from a series of views captured by a monocular camera system mounted on the robot to observe the view in front of the robot, We examine the statistical property of the gradient field of the visual potential. We show that the principal component of the gradient of the visual potential field yields the attention direction of the mobile robot for collision avoidance. Some experimental results of navigating the mobile robot in synthetic and real environments are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adorini, G., Cagnoni, S., Mordonini, M., Sgorbissa, A.: Omnidirectional stereo systems for robot navigation. In: OMNIVIS (2003)

    Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International J. of Computer Vision 12, 43–77 (1994)

    Article  Google Scholar 

  3. Bouguet, J.-Y.: Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm. Intel Corporation, Microprocessor Research Labs, OpenCV Documents (1999)

    Google Scholar 

  4. Conner, D.C., Rizzi, A.A., Choset, H.: Composition of local potential functions for global robot control and navigation. In: International Conference on Intelligent Robots and Systems, vol. 4, pp. 3546–3551 (2003)

    Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  6. Guilherme, N.D., Avinash, C.K.: Vision for mobile robot navigation: A survey. IEEE Trans. on PAMI 24, 237–267 (2002)

    Article  Google Scholar 

  7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  9. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International J. of Robotics Research 5, 90–98 (1986)

    Article  Google Scholar 

  10. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  11. Mallot, H.A., Bulthoff, H.H., Little, J.J., Bohrer, S.: Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics 64, 177–185 (1991)

    Article  MATH  Google Scholar 

  12. Murray, D., Little, J.: Using real-time stereo vision for mobile robot navigation. Autonomous Robots 8, 161–171 (2000)

    Article  Google Scholar 

  13. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraint for the estimation of displacement vector fields from image sequences. IEEE Trans. on PAMI 8, 565–593 (1986)

    Article  Google Scholar 

  14. Ohnishi, N., Imiya, A.: Featureless robot navigation using optical flow. Connection Science 17, 23–46 (2005)

    Article  Google Scholar 

  15. Ohnishi, N., Imiya, A.: Dominant plane detection from optical flow for robot navigation. Pattern Recognition Letters 27, 1009–1021 (2006)

    Article  Google Scholar 

  16. Ohnishi, N., Imiya, A.: Navigation of nonholonomic mobile robot using visual potential field. In: International Conference on Computer Vision Systems (2007)

    Google Scholar 

  17. Ohnishi, N., Imiya, A.: Corridor navigation and obstacle avoidance using visual potential for mobile robot. In: 4th Canadian Conference on Computer and Robot Vision, pp. 131–138 (2007)

    Google Scholar 

  18. Ohnishi, N., Imiya, A.: Independent component analysis of layer optical flow and its application. In: 2nd International Symposium on Brain, Vision and Artificial Intelligence, pp. 171–180 (2007)

    Google Scholar 

  19. Ohnishi, N., Imiya, A.: Independent component analysis of optical flow for robot navigation. Neurocomputing 71, 2140–2163 (2008) (accepted for publication)

    Google Scholar 

  20. Park, K.-Y., Jabri, M., Lee, S.-Y., Sejnowski, T.J.: Independent components of optical flows have MSTd-like receptive fields. In: Proc. of the 2nd International Workshop on ICA and Blind Signal Separation, pp. 597–601 (2000)

    Google Scholar 

  21. Santos-Victor, J., Sandini, G.: Uncalibrated obstacle detection using normal flow. Machine Vision and Applications 9, 130–137 (1996)

    Article  Google Scholar 

  22. Tews, A.D., Sukhatme, G.S., Matarić, M.J.: A multi-robot approach to stealthy navigation in the presence of an observer. In: ICRA, pp. 2379–2385 (2004)

    Google Scholar 

  23. Trihatmo, S., Jarvis, R.A.: Short-safe compromise path for mobile robot navigation in a dynamic unknown environment. In: Australian Conference on Robotics and Automation (2003)

    Google Scholar 

  24. Vaina, L.M., Beardsley, S.A., Rushton, S.K.: Optic flow and beyond. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  25. Wong, B., Spetsakis, M.: Scene reconstruction and robot navigation using dynamic fields. Autonomous Robots 8, 71–86 (2000)

    Article  Google Scholar 

  26. Zemel, R.S., Sejnowski, T.J.: A model for encoding multiple object motions and self-motion in area mst of primate visual cortex. Neuroscience 18, 531–547 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohnishi, N., Imiya, A. (2009). Combination of Geometrical and Statistical Methods for Visual Navigation of Autonomous Robots. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds) Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol 5604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03061-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03061-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03060-4

  • Online ISBN: 978-3-642-03061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics