Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5604))

  • 1286 Accesses

Abstract

The topic of human action recognition from image sequences gained increasing interest throughout the last years. Interestingly, the majority of approaches are restricted to dynamic motion features and therefore not universally applicable. In this paper, we propose to recognize human actions by evaluating a distribution over a set of predefined static poses which we refer to as pose primitives. We aim at a generally applicable approach that also works in still images, or for images taken from a moving camera. Experimental validation takes varying video sequence lengths into account and emphasizes the possibility for action recognition from single images, which we believe is an often overlooked but nevertheless important aspect of action recognition.

The proposed approach uses a set of training video sequences to estimate pose and action class representations. To incorporate the local temporal context of poses, atomic subsequences of poses using n-gram expressions are explored. Action classes can be represented by histograms of poses primitive n-grams which allows for action recognition by means of histogram comparison. Although the suggested action recognition method is independent of the underlying low-level representation of poses, representations remain important for targeting practical problems. Thus, to deal with common problems in video based action recognition, e.g. articulated poses and cluttered background, a recently introduced Histogram of Oriented Gradient based descriptor is extended using a non-negative matrix factorization reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Triggs, B.: A Local Basis Representation for Estimating Human Pose from Cluttered Images. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 50–59. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Ali, S., Basharat, A., Shah, M.: Chaotic Invariants for Human Action Recognition. In: ICCV 2007 (2007)

    Google Scholar 

  3. Bissacco, A., Yang, M.H., Soatto, S.: Detecting Humans via Their Pose. In: NIPS 2006 (2006)

    Google Scholar 

  4. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes. In: ICCV 2005 (2005)

    Google Scholar 

  5. Carlsson, S., Sullivan, J.: Action recognition by shape matching to key frames. In: Workshop on Models versus Exemplars in Computer Vision (2001)

    Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR 2005 (2005)

    Google Scholar 

  7. Ferrari, V., Marin, M., Zisserman, A.: Progressive Search Space Reduction for Human Pose Estimation. In: CVPR 2008 (2008)

    Google Scholar 

  8. Flash, T., Hochner, B.: Motor primitives in vertebrates and invertebrates. Current Opinion in Neurobiology 15(6), 660–666 (2005)

    Article  Google Scholar 

  9. Fod, A., Matarić, M., Jenkins, O.: Automated Derivation of Primitives for Movement Classification. Autonomous Robots 12(1), 39–54 (2002)

    Article  MATH  Google Scholar 

  10. Ghahramani, Z.: Building blocks of movement. Nature 407, 682–683 (2000)

    Article  Google Scholar 

  11. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Behavior classification by eigendecomposition of periodic motions. Pattern Recognition 38, 1033–1043 (2005)

    Google Scholar 

  12. Guerra-Filho, G., Aloimonos, Y.: A Sensory-Motor Language for Human Activity Understanding. In: 6th IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS 2006), pp. 69–75 (2006)

    Google Scholar 

  13. Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Coleman, G.: Detection and Explanation of Anomalous Activities: Representing Activities as Bags of Event n-Grams. In: CVPR 2005 (2005)

    Google Scholar 

  14. Hoyer, P.O.: Non-negative Matrix Factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)

    Google Scholar 

  15. Ikizler, N., Duygulu, P.: Human Action Recognition Using Distribution of Oriented Rectangular Patches. In: Human Motion ICCV 2007 (2007)

    Google Scholar 

  16. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A Biologically Inspired System for Action Recognition. In: ICCV 2007 (2007)

    Google Scholar 

  17. Laptev, I., Perez, P.: Retrieving actions in movies. In: ICCV 2007 (2007)

    Google Scholar 

  18. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–799 (1999)

    Article  Google Scholar 

  19. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorizationi. In: NIPS 2001 (2001)

    Google Scholar 

  20. Lu, W.L., Little, J.J.: Simultaneous Tracking and Action Recognition using the PCA-HOG Descriptor. In: CRV 2006 (2006)

    Google Scholar 

  21. Moeslund, T., Fihl, P., Holte, M.: Action Recognition using Motion Primitives. In: Danish Conference on Pattern Recognition and Image Analysis (2006)

    Google Scholar 

  22. Moeslund, T., Reng, L., Granum, E.: Finding Motion Primitives in Human Body Gestures. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory 1988. LNCS (LNAI), vol. 388, pp. 133–144. Springer, Heidelberg (1989)

    Google Scholar 

  23. Niebles, J.C., Fei-Fei, L.: A Hierarchical Model of Shape and Appearance for Human Action Classification. In: CVPR 2007 (2007)

    Google Scholar 

  24. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. In: BMVC 2006 (2006)

    Google Scholar 

  25. Ogale, A.S., Karapurkar, A., Aloimonos, Y.: View-invariant modeling and recognition of human actions using grammars. In: ICCV Workshop on Dynamical Vision (2005)

    Google Scholar 

  26. Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neuroscience Letters 391, 77–81 (2006)

    Article  Google Scholar 

  27. Schindler, K., van Gool, L.: Action Snippets: How many frames does human action recognition require? In: CVPR 2008 (2008)

    Google Scholar 

  28. Schroff, F., Criminisi, A., Zisserman, A.: Single-Histogram Class Models for Image Segmentation. In: Kalra, P.K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 82–93. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: Proceedings of the International Conference on Computer Vision (2005)

    Google Scholar 

  30. Thoroughman, K., Shadmehr, R.: Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 (2000)

    Article  Google Scholar 

  31. Thurau, C.: Behavior Histograms for Action Recognition and Human Detection. In: Human Motion ICCV 2007 (2007)

    Google Scholar 

  32. Thurau, C., Bauckhage, C., Sagerer, G.: Synthesizing Movements for Computer Game Characters. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 179–186. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  33. Thurau, C., Hlaváč, V.: n-grams of action primitives for recognizing human behavior. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  34. Thurau, C., Hlaváč, V.: Pose primitive based human action recognition in videos or still images. In: International Conference on Computer Vision and Pattern Recognition (CVPR 2008), IEEE, Los Alamitos (2008)

    Google Scholar 

  35. Vangeneugden, J., Pollick, F., Vogels, R.: Functional differentiation of macaque visual temporal cortical neurons using a parameterized action space. J. Vis. 8(6), 232–232 (2008), http://journalofvision.org/8/6/232/

    Google Scholar 

  36. Weiland, D., Boyer, E.: Action Recognition using Exemplar-based Embedding. In: CVPR 2008 (2008)

    Google Scholar 

  37. Wolpert, D.M., Ghahramani, Z., Flanagan, J.R.: Perspectives and problems in motor learning. TRENDS in Cognitive Sciences 5(11), 487–494 (2001)

    Article  Google Scholar 

  38. Zhang, L., Wu, B., Nevatia, R.: Detection and Tracking of Multiple Humans with Extensive Pose Articulation. In: ICCV 2007 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thurau, C., Hlaváč, V. (2009). Recognizing Human Actions by Their Pose. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds) Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol 5604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03061-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03061-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03060-4

  • Online ISBN: 978-3-642-03061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics