Abstract
Data releases to the public should ensure the privacy of individuals involved in the data. Several privacy mechanisms have been proposed in the literature. One such technique is that of data anonymization. For example, synthetic data sets are generated and released. In this paper we analyze the privacy aspects of synthetic data sets. In particular, we introduce a natural notion of privacy and employ it for synthetic data sets.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, B., Lefevre, K., Ramakrishnan, R.: Privacy skyline: Privacy with multidimensional adversarial knowledge. Journal of Very Large Databases (2007)
Dalenius, T.: Towards a methodology for statistical disclosure control. Statistisk Tidskrift 5, 429–444 (1977)
Dwork, C.: Differential Privacy (2008)
Horowitz, E., Sahni, S., Rajasekaran, S.: Computer Algorithms. Silicon Press (2008)
Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: Theory meets Practice on the Map. In: Proc. 24th IEEE international Conference on Data Engineering, pp. 277–286 (2008)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data 1(1) (2007)
Matthews, G.J., Harel, O., Aseltine, R.H.: Examining the Robustness of Fully Synthetic Data Techniques for Data with Binary Variables, Technical Report, UConn (June 2008)
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2007) ISBN 3-900051-07-0
Raghunathan, T.E., Reiter, J., Rubin, D.: Multiple imputation for statistical disclosure limitation. Journal of Official.Statistics 19, 1–16 (2003)
Rubin, D.B.: Discussion statistical disclosure limitation. Journal of Official Statistics 9(2) (1993)
Snedecor, G.W., Cochran, W.G.: Statistical Methods, 7th edn. The Iowa State University Press (1980)
Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rajasekaran, S., Harel, O., Zuba, M., Matthews, G., Aseltine, R. (2009). Responsible Data Releases. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2009. Lecture Notes in Computer Science(), vol 5633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03067-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-03067-3_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03066-6
Online ISBN: 978-3-642-03067-3
eBook Packages: Computer ScienceComputer Science (R0)