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Abstract. In this paper, data mining is used to analyze the differentiation of 
mammalian Mesenchymal Stem Cells (MSCs). A database comprising the key 
parameters which, we believe, influence the destiny of mammalian MSCs has 
been constructed. This paper introduces Classification Association Rule Mining 
(CARM) as a data mining technique in the domain of tissue engineering and 
initiates a new promising research field. The experimental results show that the 
proposed approach performs well with respect to the accuracy of (classification) 
prediction. Moreover, it was found that some rules mined from the constructed 
MSC database are meaningful and useful. 
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1   Introduction 

Mesenchymal Stem Cells (MSCs) have been claimed to be an integral part of tissue 
engineering due to their proliferation and differentiation potential both in vivo and in 
vitro [5, 12, 36], and have become one of the most significant research topics in the 
past several decades. MSCs are able to differentiate along the osteogenic, chondro-
genic, adipogenic, myogenic, tendonogenic, neurogenic lineages under appropriate 
stimuli [28, 31, 33] generating bone, cartilage, fat, muscle, tendon, neuron cells re-
spectively (Fig. 1). The significance of the application of MSCs in clinical therapy has 
triggered an urgent need for computational prediction of MSC differentiation [14]. 

A large amount of studies have been carried out with the aim of understanding the 
mechanisms involved in MSCs’ proliferation and differentiation both in vivo and in 
vitro [4, 17, 21, 25, 26, 27]. However, little has been achieved so far due to the enor-
mous complexity of the intracellular pathways in MSCs, especially during their dif-
ferentiation process [6]. 
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On the other hand, the experiments and studies which have been executed were not 
interrelated with each other, i.e. different experiments focused on different combina-
tions of parameters affecting MSC differentiation, including animal species, in vitro 
vs. in vivo cultures, MSC culture medium, supplements to the culture medium and 
growth factors, culture type (monolayer vs. 3D culture), cell attaching substrate (for 
monolayer culture) vs. scaffold (for 3D culture) and, in particular, the differentiation 
fates of MSCs in terms of the different lineages to which the cells committed [17, 18, 
20, 21, 27]. The scattered experimental data results in a large amount of noise in the 
database and a discrete data structure, which cannot take advantage of traditional 
mathematical modelling methods. 

For this reason, we aim to classify the data according to the different cell fates and 
predict mammalian MSC differentiation. A series of computational techniques have 
been compared, and data mining has been found to be a promising method due to its 
ability of processing discrete and noisy data. In particular, the data mining classifica-
tion approach known as Classification Association Rule Mining (CARM) [10] is used 
in this study. 

 

Fig. 1. Differentiation potential of MSCs (modified from [33]) 

The rest of this paper is organized as follows. In section 2 we describe some related 
work relevant to this study. Section 3 describes the application of CARM for mam-
malian MSC differentiation, and the construction of a domain-specific class-
transactional database for this study. Experimental results, which demonstrate that the 
proposed approach performs well with respect to the accuracy of (classification) pre-
diction, are presented in section 4. In section 5, we present our conclusions and dis-
cuss open issues for further research. 

2   Related Work 

2.1   Classification Rule Mining 

Classification Rule Mining (CRM) [23, 29] is a technique for identifying Classifica-
tion Rules (CRs) from a given class database Dc, the objective being to build a classi-
fier to categorize “unseen” data records. Generally Dc is described by a relational 
database table that includes a class attribute – whose values are a set of predefined 
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class labels C = {c1, c2, …, c|C|–1, c|C|}. The process of CRM consists of two stages: (i) 
a training phase where CRs are generated from a set of training data instances DR ⊂ 
DC; and (ii) a test phase where “unseen” instances in a test data set DE ⊂ DC are as-
signed into predefined class groups. A DC is established as DR ∪ DE, where DR ∩ DE 
= ∅. Both DR and DE share the same database attributes except the class attribute. By 
convention the last attribute in each DR record usually indicates the predefined class 
of this record, noted as the class attribute, while the class attribute is missing in DE. 

Mechanisms on which CRM algorithms have been based include: decision trees 
[29], naive Bayes [24], K-Nearest Neighbor (K-NN) [19], Support Vector Machine 
(SVM) [7], etc. 

• Decision Tree Induction: In this approach CRs are mined based on a greedy 
algorithm. The approach can be separated into two stages. In the first stage the tree 
is constructed from DR and this is followed by a tree pruning phase. In the second 
stage the pruned tree is used in CR generation. C4.5 [29] is the best known deci-
sion tree based CRM method and operates by recursively splitting DR on the at-
tribute that produces the maximum information gain to generate the decision tree. 
This tree is then pruned according to an error estimate. The result is used to clas-
sify “unseen” data records. 

• Naive Bayes: The typical mechanism found in Bayesian CRM approaches such as 
[13] is naive Bayes [24], which has been widely applied in machine learning. The 
general idea of naive Bayes is to make use of knowledge of the probabilities in-
volving attribute values and classes in the training dataset to produce a model of a 
machine learning application that can then be applied to “unseen” data. The term 
naive is used to refer to the assumption that the conditional probability of a data-
base attribute value given a class is independent of the conditional probability of 
other attribute values given that class. A naive Bayes classifier [30] is built using 
DR, and comprises a set of conditional probabilities for each database attribute and 
each class ci ∈ C, so that there are n × |C| conditional probabilities, where n repre-
sents the number of attributes in DR and |C| is the size function (cardinality) of C. 
A naive Bayes classifier also comprises a set of prior class probabilities, one for 
each class. All these probabilities are then used to classify “unseen” data records 
in DE according to Bayes’ theorem. 

• K-Nearest Neighbor: K-NN [19] is a well-known statistical approach used in 
CRM, and classifies an “unseen” data record d′j′ ∈ DE, by assigning to that record 
the most frequent class in the set of the K most similar instances to d′j′, identified 
in DR. To identify the K most similar training-instances for d′j′, calculation of the 
Euclidean distance value between each training data record dj ∈ DR and d′j′ is 
commonly used: 

distance(dj, d′j′) = √ (∑⎨k = 1…n⎬ (dj.k –d′j′.k)2) ,            (1) 

where dj.k and d′j′.k are the values of the k-th data attribute in DC for dj and d′j′. 

• Support Vector Machine: The objective of using SVM [7] is to find a hypothesis 
ĥ which minimizes the true error defined as the probability that ĥ produces an er-
roneous result. SVM makes use of linear functions of the form: 
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f(x) = w T x + b , (2) 

where w is the weight vector, x is the input vector, and w T x is the inner product 
between w and x. The main concept of SVM is to select a hyperplane that sepa-
rates the positive and negative examples while maximizing the smallest margin. 
Standard SVM techniques produce binary classifiers as opposed to multi-
classifiers. Two common approaches to support the application of SVM tech-
niques to the multi-class problem are One Against All (OAA) and One Against 
One (OAO). 

2.2   Association Rule Mining 

Association Rule Mining (ARM), first introduced in [1], aims to extract a set of Asso-
ciation Rules (ARs) from a given transactional database DT. An AR describes an im-
plicative co-occurring relationship between two sets of binary-valued transactional 
database attributes (items), expressed in the form of an “antecedent ⇒ consequent” 
rule. Cornelis et al. [11] suggest that the concept of mining ARs can be dated back to 
the work in 1960’s [15]. 

More generally, we define ARM as follows. Let I = {a1, a2, …, an–1, an} be a set of 
items, and Ŧ = {T1, T2, …, Tm–1, Tm} be a set of transactions (data records), a transac-
tional database DT is described by Ŧ, where each Tj ∈ Ŧ comprises a set of items I′ ⊆ 
I. In ARM, two threshold values are usually used to determine the significance of an 
AR: 

1. Support: A set of items S is called an itemset. The support of S is the proportion 
of transactions T in Ŧ for which S ⊆ T. If the support of S exceeds a user-
supplied support threshold σ, S is defined to be a frequent itemset. 

2. Confidence: Represents how “strongly” an itemset X implies another itemset Y, 
where X, Y ⊆ I and X ∩ Y = ∅. A confidence threshold α, supplied by the user, 
is used to distinguish high confidence ARs from low confidence ARs. 

An AR X ⇒ Y is said to be valid when the support for the co-occurrence of X and Y 
exceeds σ, and the confidence of this AR exceeds α. The computation of support is: 

support(X ∪ Y) = count(X ∪ Y) / |Ŧ| , (3) 

where count(X ∪ Y) is the number of transactions containing the set X ∪ Y in Ŧ, and 
|Ŧ| is the size function (cardinality) of the set Ŧ. The computation of confidence is: 

confidence(X ⇒ Y) = support(X ∪ Y) / support(X) . (4) 

Informally, “X ⇒ Y” can be interpreted as: if X is found in a transaction, it is likely 
that Y also will be found. 

2.3   Classification Association Rule Mining 

An overlap between ARM and CRM is CARM (Classification Association Rule 
Mining), which strategically solves the traditional CRM problem by applying ARM 
techniques. The idea of CARM, first introduced in [2], aims to extract a set of  
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Classification Association Rules (CARs) from a class-transactional database DC-T. 
Let DT be a transactional database, and C = {c1, c2, …, c|C|–1, c|C|} be a set of prede-
fined class labels, DC-T is described by DT × C. DC-T can also be defined as a special 
class database DC, where all database attributes and the class attribute are valued in 
a binary manner – “Boolean attributes can be considered a special case of cate-
gorical attributes” [32]. A CAR is a special AR that describes an implicative  
co-occurring relationship between a set of binary-valued data attributes and a prede-
fined class, expressed in the form of an “X ⇒ ci” rule, where X is an itemset found 
in DT (as “DC-T – C”) and ci is a predefined class in C. 

2.4   Advantages of CARM 

CARM offers the following advantages with respect to the CRM techniques men-
tioned above [3, 35]: 

1. The approach is efficient during both the training and categorization phases, 
especially when handling a large volume of data. 

2. The classifier built in this approach can be read, understood and modified by 
humans. 

Furthermore, CARM is relatively insensitive to noise data. CARM builds a classifier 
by extracting a set of CARs from a given set of training instances. Possible CARs are 
determined by: (i) a large enough support, and (ii) a large enough confidence. Usu-
ally, rules derived from noise in the data will fail to reach these thresholds and will be 
discarded. 

In comparison, CRM approaches other than CARM, i.e. naive Bayes, K-NN, SVM, 
etc., do not present the classifier in a human readable fashion, so that users do not see 
why the (classification) predictions have been made. Rules generated by a decision 
tree based classifier can be read and understood by human; however, Coenen et al. [9] 
suggest that results presented in the studies of [22] and [23] show that in many cases 
CARM offers higher classification accuracy than decision tree based classification. 

For these reasons it is proposed to use a CARM approach to address the prediction 
of mammalian MSC differentiation. One of the existing CARM frameworks is the 
CMAR (Classification based on Multiple Association Rules) algorithm [22]. CMAR 
generates CARs (from a given set of training instances) through an FP-tree [16] based 
approach. Experimental results using this algorithm reported in [22] show that it could 
achieve high classification accuracy for a range of data sets. 

3   Database Construction for Mammalian MSC Differentiation 

In order to make a (classification) prediction of mammalian MSC differentiation us-
ing CARM, a domain-dependent database containing 375 parameters that are believed 
to influence the MSC differentiation has been built and can be accessed online1. The 
parameters in this database include the most significant ones, such as donor species, 
in vitro vs. in vivo culture, culture medium, supplements and growth factors, culture 

                                                           
1 http://www.oxford-tissue-engineering.org/forum/plugin.php?identifier=publish&module=publish 
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type (monolayer vs. 3D culture), substrate (for monolayer culture) vs. scaffold (for 3D 
culture), MSC differentiation fate, as well as other potentially important parameters 
including age of donor, cell passage number, concentrations of chemicals and buffer, 
cell seeding density, incubation duration, pH value, expression of cell markers, ex-
pansion fold of cell number, etc. All the records are abstracted from previously pub-
lished papers and each is stated clearly with the corresponding reference. 

The current size of this database is 203 records, each containing attributes includ-
ing experimental conditions and results, i.e. rule antecedents and rule consequent-
classes respectively. There are four types of attributes in the database: 

• For the qualitative parameters which have only two possible values, such as the 
presence/absence of insulin in the culture medium, the corresponding attributes in 
the database are binary, i.e. ‘1’ refers to ‘presence’ and ‘0’ refers to ‘absence’. 

• For the qualitative parameters which have a set of possible categorical values, 
such as animal species, the attributes are stored as integer symbols. 

• For the quantitative parameters, such as cell seeding density, the attributes are 
stored as real numbers. 

• For the descriptive parameters, such as additional conditions, the attributes are 
stored as text/characters. 

3.1   Data Filtering 

The database contains a large variety of information, among which some parameters 
are previously known to be more important and effective to the differentiation fates 
than others. Those parameters and their significance are listed in Table 1. 

Other parameters, such as buffer, gas condition, pH value, etc., seem to be just for 
facilitating the differentiation. We are also aware that procedures such as radiation, 
 

Table 1. The most significant parameters in the MSC database 

Parameters Significance/Description 

Donor Species 
Same culture conditions on MSCs from different species  
of mammal may lead to different results. 

In Vitro / In Vivo 
MSC differentiation varies significantly from in vivo to in  
vitro environment. 

Culture Medium 
Most essential environment where MSCs grow, proliferate  
and differentiate. 

Supplements & Growth Factors 
Chemicals that maintain MSC differentiation potential or  
influence their differentiation fate. 

Culture Type (2D vs. 3D) 
MSC differentiation sometimes differs significantly from  
monolayer to 3D culture, even under the same culture  
medium and supplements. 

Substrate (for 2D) / Scaffold (for 3D) 
Influences cell viability. A chemically modified substrate  
can even change MSCs’ differentiation fate. 

Differentiation Fate 
The most significant and obvious result after cell culture.  
Used as the classes in the database and the prediction in  
this study. 
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centrifugation and mechanical stimulation sometimes affect MSCs, and that MSCs 
from bone marrow are sometimes different from those from other sources, e.g. um-
bilical cord blood. However, in order to identify plausible MSC differentiation rules 
the essential parameters considered were those in Table 1; other parameters could be 
excluded if the purpose were to predict the MSC differentiation fate, according to the 
“unseen” rules. 

3.2   Data Normalization and Cleaning 

In this study, only the parameters listed in Table 1 were extracted from the MSC da-
tabase and used for the (classification) prediction. Consequently, the number of at-
tributes in the abstracted database was reduced from 375 to 105. The database was 
then discretised and normalised using the LUCS-KDD Discretised Normalised (DN) 
software2, so that data are presented in a binary format suitable for use by CARM 
applications. It should be noted that the database was re-arranged so that occurrences 
of classes (i.e. osteogenesis, chondrogenesis, etc.) were distributed evenly throughout 
the database. This then allowed CMAR to be applied to (90% – training set, 10% – 
test set) divisions of the database with Ten-fold Cross Validation (TCV) accuracy 
setting. In this study, the discretisation and normalisation process results in a data file 
with the number of attributes increased to 173. 

This discretised and normalised data file contains a number of noisy data, generally 
caused by the absence of culture conditions such as some growth factors. For exam-
ple, if the growth factor insulin is absent in a record, this record will have an attribute 
representing “absence of insulin” after the discretisation and normalisation process. 
However, the rules that we are looking for in this study are those without the informa-
tion of “absence”, i.e. those only containing the information of “presence”. Thus, all 
the attributes representing “absence” were then eliminated from the data file, resulting 
in the final input data file for CARM. In this final input file, all the records cover five 
classes in total, i.e. five kinds of MSC fates: “osteogenesis”, “chondrogenesis”, “adi-
pogenesis”, “neurogenesis”, and “proliferation without differentiation”. 

4   Results 

In this section, we aim to evaluate the usage of CARM for mammalian MSC differen-
tiation. The evaluation was performed using the CMAR algorithm although any other 
CARM classifier generator could equally well have been used. Experiments were run 
on a 2.00 GHz Intel(R) Core(TM)2 CPU with 2.00 GB of RAM running under Win-
dows Command Processor. The evaluation undertaken used a confidence threshold 
value (α) of 50% and a support threshold value (σ) of 1% (as previously used in pub-
lished CARM evaluations [8, 9, 22, 34]). The overall (classification) prediction accu-
racy is 77.04%. 

There were 163 CMAR rules generated from the input data file, among which 
many are found to be meaningful and useful. Two rules are described as an example, 
with the actual confidence values presented in square brackets: 

                                                           
2 http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/lucs-kdd_DN.html 
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1. Rule # 49: {in vitro + monolayer + human donor + DMEM + TGFβ1 + 
plastic substrate} ⇒ {chondrogenesis} [100.0%], which can be interpreted 
as: in monolayer culture in vitro, human MSCs are most likely to undergo chon-
drogenesis in the presence of cell culture medium DMEM (Dulbecco’s Modified 
Eagle’s Medium) and growth factor TGFβ1 (Transforming Growth Factor β1), on 
plastic substrate (Fig. 2). 

 

Fig. 2. Description of rule # 49 

2. Rule # 86: {DMEM + FBS + ascorbate-2-phosphate + Dex} ⇒ {osteogene-
sis} [93.33%], which can be interpreted as: in DMEM medium supplemented 
with FBS (Fetal Bovine Serum), MSCs are very likely to be induced to osteo-
genesis under the stimuli of ascorbate-2-phosphate and Dex (Dexamethasone)  
together (Fig. 3). 

 

Fig. 3. Description of rule # 86 

5   Conclusions 

In this study, the (classification) prediction of MSC differentiation has been achieved 
using CARM, with an accuracy of 77.04%. We have introduced, for the first time, 
data mining techniques to mesenchymal stem cell, initiating a new promising research 
field. We are aware, nevertheless, that there is room to increase the (classification) 
prediction accuracy, as well as to streamline the pruning of generated rules by im-
proving the CARM technique or using alternative mechanisms. Additionally, many of 



 Application of Classification Association Rule Mining 59 

the identified rules were found to be already known in the laboratory. However, the 
identification of completely original rules is possible and expected if the size and 
contents of the MSC database are properly expanded in the future. 
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