Skip to main content

Graph States and the Necessity of Euler Decomposition

  • Conference paper
Mathematical Theory and Computational Practice (CiE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Included in the following conference series:

  • 1040 Accesses

Abstract

Coecke and Duncan recently introduced a categorical formalisation of the interaction of complementary quantum observables. In this paper we use their diagrammatic language to study graph states, a computationally interesting class of quantum states. We give a graphical proof of the fixpoint property of graph states. We then introduce a new equation, for the Euler decomposition of the Hadamard gate, and demonstrate that Van den Nest’s theorem—locally equivalent graphs represent the same entanglement—is equivalent to this new axiom. Finally we prove that the Euler decomposition equation is not derivable from the existing axioms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004, pp. 415–425. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  2. Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Proceedings of the International School of Physics “Enrico Fermi” on Quantum Computers, Algorithms and Chaos (July 2005)

    Google Scholar 

  4. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  Google Scholar 

  5. Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local clifford transformations on graph states. Physical Review A 69, 022316 (2004)

    Article  Google Scholar 

  6. Kelly, G., Laplaza, M.: Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, 193–213 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Joyal, A., Street, R.: The geometry of tensor categories i. Advances in Mathematics 88, 55–113 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceedings of the 3rd International Workshop on Quantum Programming Languages (2005)

    Google Scholar 

  9. Duncan, R.: Types for Quantum Computation. PhD thesis. Oxford University (2006)

    Google Scholar 

  10. Coecke, B., Pavlovic, D., Vicary, J.: A new description of orthogonal bases. Math. Structures in Comp. Sci., 13 (2008), http://arxiv.org/abs/0810.0812 (to appear)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duncan, R., Perdrix, S. (2009). Graph States and the Necessity of Euler Decomposition. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics