Skip to main content

Spectra of Algebraic Fields and Subfields

  • Conference paper
Mathematical Theory and Computational Practice (CiE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Included in the following conference series:

Abstract

An algebraic field extension of ℚ or ℤ/(p) may be regarded either as a structure in its own right, or as a subfield of its algebraic closure \(\overline{F}\) (either \(\overline{\mathbb{Q}}\) or \(\overline{{\mathbb{Z}}/(p)}\)). We consider the Turing degree spectrum of F in both cases, as a structure and as a relation on \(\overline{F}\), and characterize the sets of Turing degrees that are realized as such spectra. The results show a connection between enumerability in the structure F and computability when F is seen as a subfield of \(\overline{F}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calvert, W., Harizanov, V., Shlapentokh, A.: Turing degrees of isomorphism types of algebraic objects. Journal of the London Math. Soc. 73, 273–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Coles, R.J., Downey, R.G., Slaman, T.A.: Every set has a least jump enumeration. Journal of the London Mathematical Society 62(2), 641–649 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Edwards, H.M.: Galois Theory. Springer, New York (1984)

    MATH  Google Scholar 

  4. Ershov, Y.L.: Theorie der Numerierungen III. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 23(4), 289–371 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum Press, New York (2000)

    Book  MATH  Google Scholar 

  6. Fried, M.D., Jarden, M.: Field Arithmetic. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  7. Frohlich, A., Shepherdson, J.C.: Effective procedures in field theory. Phil. Trans. Royal Soc. London, Series A 248(950), 407–432 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frolov, A., Kalimullin, I., Miller, R.G.: Spectra of algebraic fields and subfields, http://qcpages.qc.cuny.edu/~rmiller/CiE09.pdf

  9. Harizanov, V., Miller, R.: Spectra of structures and relations. Journal of Symbolic Logic 72(1), 324–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jacobson, N.: Basic Algebra I. W.H. Freeman & Co., New York (1985)

    MATH  Google Scholar 

  11. Knight, J.F.: Degrees coded in jumps of orderings. Journal of Symbolic Logic 51, 1034–1042 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Größen. J. f. Math. 92, 1–122 (1882)

    MATH  Google Scholar 

  13. Metakides, G., Nerode, A.: Effective content of field theory. Annals of Mathematical Logic 17, 289–320 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller, R.G.: Computable fields and Galois theory. Notices of the AMS 55(7), 798–807 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Miller, R.G.: Is it harder to factor a polynomial or to find a root? Transactions of the American Mathematical Society (to appear)

    Google Scholar 

  16. Miller, R.G.: d-Computable categoricity for algebraic fields. The Journal of Symbolic Logic (to appear)

    Google Scholar 

  17. Rabin, M.: Computable algebra, general theory, and theory of computable fields. Transactions of the American Mathematical Society 95, 341–360 (1960)

    MathSciNet  MATH  Google Scholar 

  18. Richter, L.J.: Degrees of structures. Journal of Symbolic Logic 46, 723–731 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, New York (1987)

    Book  MATH  Google Scholar 

  20. Stoltenberg-Hansen, V., Tucker, J.V.: Computable Rings and Fields. In: Griffor, E.R. (ed.) Handbook of Computability Theory, pp. 363–447. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  21. van der Waerden, B.L.: Algebra, vol. I. Springer, New York (Hard Cover 1970); trans., Blum, F., Schulenberger, J.R. (2003 softcover)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frolov, A., Kalimullin, I., Miller, R. (2009). Spectra of Algebraic Fields and Subfields. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics