Skip to main content

On Generating Independent Random Strings

  • Conference paper
Mathematical Theory and Computational Practice (CiE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Included in the following conference series:

  • 912 Accesses

Abstract

It is shown that from two strings that are partially random and independent (in the sense of Kolmogorov complexity) it is possible to effectively construct polynomially many strings that are random and pairwise independent. If the two initial strings are random, then the above task can be performed in polynomial time. It is also possible to construct in polynomial time a random string, from two strings that have constant randomness rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bourgain, J.: More on the sum-product phenomenon in prime fields and its applications. International Journal of Number Theory 1, 1–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calude, C., Zimand, M.: Algorithmically independent sequences. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 183–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Fortnow, L., Hitchcock, J., Pavan, A., Vinodchandran, N.V., Wang, F.: Extracting Kolmogorov complexity with applications to dimension zero-one laws. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 335–345. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Rao, A.: A 2-source almost-extractor for linear entropy. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 549–556. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Raz, R.: Extractors with weak random seeds. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 11–20. ACM, New York (2005)

    Google Scholar 

  6. Vereshchagin, N.K., Vyugin, M.V.: Independent minimum length programs to translate between given strings. Theor. Comput. Sci. 271(1-2), 131–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zimand, M.: Two sources are better than one for increasing the Kolmogorov complexity of infinite sequences. In: Hirsch, E.A., Razborov, A.A., Semenov, A.L., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010, pp. 326–338. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Zimand, M.: Extracting the Kolmogorov complexity of strings and sequences from sources with limited independence. In: Proceedings 26th STACS, Freiburg, Germany, February 26–29 (2009)

    Google Scholar 

  9. Zvonkin, A., Levin, L.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25(6), 83–124 (1970)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zimand, M. (2009). On Generating Independent Random Strings. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics