Skip to main content

Representations of Numbers as \(\sum_{k=-n}^n \varepsilon_k k\):A Saddle Point Approach

  • Conference paper
Infinity in Logic and Computation (ILC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5489))

Included in the following conference series:

Abstract

Using the saddle point method, we obtain from the generating function of the numbers in the title and Cauchy’s integral formula asymptotic results of high precision in central and non-central regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clark, L.: On the representation of m as \(\sum\sp n\sb {k=-n}\epsilon\sb kk\). Int. J. Math. Math. Sci. 23, 77–80 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Entringer, R.C.: Representation of m as \(\sum \sb{k=-n}\sp{n}\,\varepsilon \sb{k}k\). Canad. Math. Bull. 11, 289–293 (1968)

    MATH  MathSciNet  Google Scholar 

  3. Feller, W.: Introduction to Probability Theory and its Applications, vol. I. Wiley, Chichester (1968)

    MATH  Google Scholar 

  4. Flajolet, P., Sedgewick, B.: Analytic combinatorics. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  5. Louchard, G., Prodinger, H.: The number of inversions in permutations: A saddle point approach. J. Integer Seq. 6, 03.2.8 (2003)

    Google Scholar 

  6. Odlyzko, A.: Graham, R., Götschel, M., Lovász, L. (eds.): Asymptotic Enumeration, pp. 1063–1229. Elsevier Science, Amsterdam (1995)

    Google Scholar 

  7. van Lint, J.H.: Representation of 0 as \(\sum \sp{N}\sb{k=-N}\,\varepsilon \sb{k}k\). Proc. Amer. Math. Soc. 18, 182–184 (1967)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Louchard, G., Prodinger, H. (2009). Representations of Numbers as \(\sum_{k=-n}^n \varepsilon_k k\):A Saddle Point Approach. In: Archibald, M., Brattka, V., Goranko, V., Löwe, B. (eds) Infinity in Logic and Computation. ILC 2007. Lecture Notes in Computer Science(), vol 5489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03092-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03092-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03091-8

  • Online ISBN: 978-3-642-03092-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics