Abstract
Using the saddle point method, we obtain from the generating function of the numbers in the title and Cauchy’s integral formula asymptotic results of high precision in central and non-central regions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clark, L.: On the representation of m as \(\sum\sp n\sb {k=-n}\epsilon\sb kk\). Int. J. Math. Math. Sci. 23, 77–80 (2000)
Entringer, R.C.: Representation of m as \(\sum \sb{k=-n}\sp{n}\,\varepsilon \sb{k}k\). Canad. Math. Bull. 11, 289–293 (1968)
Feller, W.: Introduction to Probability Theory and its Applications, vol. I. Wiley, Chichester (1968)
Flajolet, P., Sedgewick, B.: Analytic combinatorics. Cambridge University Press, Cambridge (2009)
Louchard, G., Prodinger, H.: The number of inversions in permutations: A saddle point approach. J. Integer Seq. 6, 03.2.8 (2003)
Odlyzko, A.: Graham, R., Götschel, M., Lovász, L. (eds.): Asymptotic Enumeration, pp. 1063–1229. Elsevier Science, Amsterdam (1995)
van Lint, J.H.: Representation of 0 as \(\sum \sp{N}\sb{k=-N}\,\varepsilon \sb{k}k\). Proc. Amer. Math. Soc. 18, 182–184 (1967)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Louchard, G., Prodinger, H. (2009). Representations of Numbers as \(\sum_{k=-n}^n \varepsilon_k k\):A Saddle Point Approach. In: Archibald, M., Brattka, V., Goranko, V., Löwe, B. (eds) Infinity in Logic and Computation. ILC 2007. Lecture Notes in Computer Science(), vol 5489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03092-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-03092-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03091-8
Online ISBN: 978-3-642-03092-5
eBook Packages: Computer ScienceComputer Science (R0)