Skip to main content

Evaluating a Dependable Sharable Atomic Data Service on a Planetary-Scale Network

  • Conference paper
Algorithms and Architectures for Parallel Processing (ICA3PP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5574))

  • 1790 Accesses

Abstract

Practical implementations of atomically consistent read/write memory service are important building blocks for higher level applications. This is especially true when data accessibility and survivability are provided by a distributed platform consisting of networked nodes, where both nodes and connections are subject to failure. This work presents an experimental evaluation of the practicality of an atomic memory service implementation, called RA M B O , which is the first to support multiple reader, multiple writer access to the atomic data with an integrated reconfiguration protocol to replace the underlying set of replicas without any interruption of the ongoing operations. Theoretical guarantees of this service are well understood; however, only rudimentary analytical performance along with limited LAN testing were performed on the implementation of RA M B O – neither representing any realistic deployment setting. In order to assess true practicality of the RA M B O service, we devised a series of experiments tested on PlanetLab – a planetary-scale research WAN network. Our experiments show that RA M B O ’s performance is reasonable (under the tested scenarios) and under the somewhat extreme conditions of PlanetLab. This demonstrates the feasibility of developing dependable reconfigurable sharable data services with provable consistency guarantees on unreliable distributed systems.

This work is partially supported by the European Union project EGEE (#INFSO-RI-031688) and the University of Cyprus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Special issue on group communication services. Communications of the ACM 39(4) (1996)

    Google Scholar 

  2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. Journal of the ACM (JACM) 42(1), 124–142 (1995)

    Article  MATH  Google Scholar 

  3. Awerbuch, B., Vitanyi, P.: Atomic shared register access by asynchronous hardware. In: Proc. of 27th IEEE Symposium on Foundations of Computer Science, pp. 233–243 (1986)

    Google Scholar 

  4. Bavier, A., Muir, S., Peterson, L., Spalink, T., Wawrzoniak, M., Bowman, M., Chun, B., Roscoe, T., Culler, D.: Operating system support for planetary-scale network services. In: Symposium on Networked Systems Design and Implementation, San Francisco, CA (2004)

    Google Scholar 

  5. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In: Proc. of the 11th ACM Symposium on Operating Systems Principles (December 1987)

    Google Scholar 

  6. Chockler, G., Gilbert, S., Gramoli, V., Musial, P., Shvartsman, A.: Reconfigurable dis- tributed storage for dynamic networks. Journal of Parallel and Distributed Computing 69(1), 100–116 (2009)

    Article  MATH  Google Scholar 

  7. Englert, B., Shvartsman, A.: Graceful quorum reconfiguration in a robust emulation of shared memory. In: Proc. of International Conference on Distributed Computer Systems, pp. 454–463 (2000)

    Google Scholar 

  8. Georgiou, C., Musial, P., Shvartsman, A.: Long-Lived RAMBO: Trading Knowledge for Communication. Theoretical Computer Science 383(1), 59–85 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Georgiou, C., Musial, P., Shvartsman, A.: Developing a Consistent Domain-Oriented Distributed Object Service. IEEE Transactions of Parallel and Distributed Systems (2009)

    Google Scholar 

  10. Gifford, D.: Weighted voting for replicated data. In: Proc. of 7th ACM Symp. on Oper. Sys. Princ., pp. 150–162 (1979)

    Google Scholar 

  11. Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO II: rapidly reconfigurable atomic memory for dynamic networks. In: Proceedings of International Conference on Dependable Systems and Networks, 2003, pp. 259–268 (2003)

    Google Scholar 

  12. Gramoli, V., Musiał, P., Shvartsman, A.: Operation liveness in a dynamic distributed atomic data service with efficient gossip management. In: Proc. 18th International Conference on Parallel and Distributed Computing Systems (August 2005)

    Google Scholar 

  13. Khazan, R., Yuditskaya, S.: A wide area network simulation of single-round group membership algorithms. In: Proc. 4th IEEE International Symposium on Network Computing and Applications, July 2005, pp. 149–158 (2005)

    Google Scholar 

  14. Lamport, L.: The Part-Time Parliament. ACM Transactions on Computer Systems 16(2), 133–169 (1998)

    Article  Google Scholar 

  15. Lampson, B.: The ABCD’s of Paxos. In: Proceedings of the 20’th annual ACM Symposium on Principles of Distributed Computing, p. 13. ACM Press, New York (2001)

    Google Scholar 

  16. Lynch, N., Shvartsman, A.: Robust emulation of shared memory using dynamic quorumacknowledged broadcasts. In: Symposium on Fault-Tolerant Computing, pp. 272–281 (1997)

    Google Scholar 

  17. Lynch, N., Shvartsman, A.: RAMBO: A reconfigurable atomic memory service for dy- namic networks. In: Proceedings of the 16th International Symposium, pp. 173–190 (2002)

    Google Scholar 

  18. Musial, P.: From High Level Specification to Executable Code: Specification, Refinement, and Implementation of a Survivable and Consistent Data Service for Dynamic Networks. Ph.D thesis, University of Connecticut (2007)

    Google Scholar 

  19. Musial, P., Shvartsman, A.: Implementing a reconfigurable atomic memory service for dynamic networks. In: Proceedings of 18’th International Parallel and Distributed Symposium—FTPDS WS (2004)

    Google Scholar 

  20. Peterson, L.L., Bavier, A.C., Fiuczynski, M.E., Muir, S.: Experiences building planetlab. In: OSDI, pp. 351–366 (2006)

    Google Scholar 

  21. Thomas, R.: A majority consensus approach to concurrency control for multiple copy databases. ACM Trans. on Database Sys. 4(2), 180–209 (1979)

    Article  Google Scholar 

  22. Upfal, E., Wigderson, A.: How to share memory in a distributed system. Journal of the ACM (JACM) 34(1), 116–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgiou, C., Hadjiprocopiou, N., Musial, P.M. (2009). Evaluating a Dependable Sharable Atomic Data Service on a Planetary-Scale Network. In: Hua, A., Chang, SL. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2009. Lecture Notes in Computer Science, vol 5574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03095-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03095-6_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03094-9

  • Online ISBN: 978-3-642-03095-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics