Abstract
In this paper a definition of the exploration performed by stochastic algorithms is proposed. It is based on the observation through cluster analysis of the solutions generated during a run. The probabilities associated by an algorithm to solution components are considered. Moreover, a consequent method for quantifying the exploration is provided. Such a measurement is applied to \(\cal M\!AX\!\)–\(\cal MI\!N\!\) Ant System. The results of the experimental analysis allow to observe the impact of the parameters of the algorithm on the exploration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Battiti, R.: Reactive Search: Toward Self-Tuning Heuristics. In: Rayward-Smith, V.J., Osman, I.H., Reeves, C.R., Smith, G.D. (eds.) Modern Heuristic Search Methods, pp. 61–83. John Wiley & Sons, Chichester (1996)
Berry, M.J.A., Linoff, G.: Mastering Data Mining. Wiley Computer Publishing, Chichester (2000)
Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Metaheuristics for the Vehicle Routing Problem with Stochastic Demands. Journal of Mathematical Modelling and Algorithms 9, 91–110 (2006)
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for Configuring Metaheuristics. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO, pp. 11–18 (2002)
Corne, D., Dorigo, M., Glover, F.: The Ant Colony Optimization Meta-Heuristic. In: New Ideas in Optimization. McGraw Hill, New York (1999)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Esbensen, H., Kuh, E.: EXPLORER: an interactive floorplanner for design space exploration. In: EURO-DAC 1996/EURO-VHDL 1996: Proceedings of the conference on European design automation, pp. 356–361. IEEE Computer Society Press, Los Alamitos (1996)
Everitt, B.: Cluster Analysis. Heinemann Educational Books (1974)
Everitt, B., Landau, S., Leese, M.: Cluster Analysis. Arnold, London (2001)
Glover, F., Kochenberger, G.: Handbook of Metaheuristics. Kluwer Academic Publishers, Dordrecht (2002)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)
Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization with best-so-far reinforcement. In: Methodology and Computing in Applied Probability (2008)
Hanafi, S.: On the Convergence of Tabu Search. Journal of Heuristics 7, 47–58 (2001)
Hoos, H.H., Stützle, T.: Stochastic Local Search. Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2004)
Ibaraki, T., Nonobe, K., Yagiura, M.: Metaheuristics: Progress as Real Problem Solvers. Kluwer Academic Publisher, Dordrecht (2005)
Jardine, N., Sibson, R.: The Construction of Hierarchic and Non-Hierarchic Classifications. The Computer Journal 11, 177–184 (1968)
Kaufman, L., Rousseeu, P.J.: Finding groups in data. An introduction to cluster analysis. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. Wiley, New York (1990)
Kauffman, S.A.: The Origins of Order. In: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publisher, Dordrecht (2001)
Lorena, L.A.N., Furtado, J.C.: Constructive Genetic Algorithm for Clustering Problems. Evolutionary Computation 9, 309–327 (2001)
Maher, M.L., Poon, J.: Modelling design exploration as co-evolution. Microcomputers in Civil Engineering, 195–210 (1996)
Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics. Springer, Heidelberg (2000)
Osman, I.H., Kelly, J.P.: Meta-Heuristics: The Theory and Applications. Kluwer Academic Publisher, Dordrecht (1996)
Pellegrini, P., Favaretto, D., Moretti, E.: Multiple Ant Colony Optimization for a Rich Vehicle Routing Problem: a Case Study, Department of Applied Mathematics, Università Ca’ Foscari (2006)
Pellegrini, P.: ACO: parameters, exploration and quality of solutions. Phd Thesis. Università Ca’ Foscari (2007)
Rizzoli, A.E., Montemanni, R., Lucibello, E., Gambardella, L.M.: Ant Colony Optimisation for real world vehicle routing problems: from theory to applications. Swarm Intelligence 1, 135–151 (2007)
Stützle, T., Hoos, H.H.: The \(\cal MAX\)–\(\cal MIN\) Ant System and Local Search for the Traveling Salesman Problem. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) ICEC 1997, pp. 309–314 (1997)
Stützle, T., Hoos, H.H.: Improvements on the Ant System: Introducing the \(\cal MAX\)–\(\cal MIN\) Ant System. In: Smith, G.D., Steele, N.C., Albrecht, R.F. (eds.) Artificial Neural Networks and Genetic Algorithms, pp. 245–249. Springer, Heidelberg (1998)
Stützle, T., Hoos, H.H.: \(\cal MAX\)–\(\cal MIN\) Ant System and Local Search for Combinatorial Optimization Problems. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 137–154. Kluwer Academic Publishers, Dordrecht (1999)
Stützle, T., Hoos, H.H.: \(\cal MAX\)–\(\cal MIN\) Ant System. Future Generation Computer Systems 16, 889–914 (2000)
Toussaint, M.: The structure of evolutionary exploration: On crossover, buildings blocks, and Estimation-Of-Distribution Algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1444–1456. Springer, Heidelberg (2003)
Voss, S., Martello, S., Osman, I.H., Roucairol, C.: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, Dordrecht (1999)
Watson, J.P., Whitley, L.D., Howe, A.E.: Linking Search Space Srtucture, Run-Time Dynamics, and Problem Difficulty: A Step Toward Demystifying Tabu Search. Journal of Artificial Intelligence Research 24, 221–261 (2005)
Xu, J., Chiu, S.Y., Glover, F.: Fine-Tuning a tabu search algorithm with statistical tests. International Transactions in Operational Research 5, 233–244 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pellegrini, P., Favaretto, D., Moretti, E. (2009). Exploration in Stochastic Algorithms: An Application on \(\cal M\!AX\!\)–\(\cal MI\!N\!\) Ant System. In: Krasnogor, N., Melián-Batista, M.B., Pérez, J.A.M., Moreno-Vega, J.M., Pelta, D.A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2008). Studies in Computational Intelligence, vol 236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03211-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-03211-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03210-3
Online ISBN: 978-3-642-03211-0
eBook Packages: EngineeringEngineering (R0)